Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 1, Pages 31–51
DOI: https://doi.org/10.26907/0021-3446-2021-1-31-51
(Mi ivm9639)
 

This article is cited in 6 scientific papers (total in 6 papers)

Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line

Kh. A. Khachatryanabc, H. S. Petrosyanda

a Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991 Russia
b Institute of Mathematics, National Academy of Sciences of Armenia, 24/5 Marshal Baghramyan Ave., Yerevan, 0019 Armenia
c Yerevan State University, 1 A. Manukyan str., Yerevan, 0025 Armenia
d National Agrarian University of Armenia
Full-text PDF (937 kB) Citations (6)
References:
Abstract: We study a system of nonlinear singular integral equations with a sum-difference kernel on the positive half-line. In various representations, the system arises in many branches of mathematical physics and applied mathematics. In particular, a system of equations with a kernel representing a Gaussian distribution and with power nonlinearity arises in the dynamic theory of $ p $-adic open-closed strings, and in the case when the nonlinearity has a certain exponential structure, such a system occurs in mathematical biology, namely in the theory of the spatio-temporal distribution of the epidemic.
The constructive theorems of the existence of non-negative non-trivial continuous and bounded solutions are proved. The questions of uniqueness and asymptotic behavior of the constructed solutions at infinity are investigated. At the end, specific applied examples of these equations are given that satisfy all the conditions of the proved theorems.
Keywords: kernel, nonlinearity, monotonicity, convexity, spectral radius, limit of solution.
Funding agency Grant number
Russian Science Foundation 19-11-00223
Received: 27.03.2020
Revised: 28.04.2020
Accepted: 29.06.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 1, Pages 27–46
DOI: https://doi.org/10.3103/S1066369X21010035
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: Kh. A. Khachatryan, H. S. Petrosyan, “Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1, 31–51; Russian Math. (Iz. VUZ), 65:1 (2021), 27–46
Citation in format AMSBIB
\Bibitem{KhaPet21}
\by Kh.~A.~Khachatryan, H.~S.~Petrosyan
\paper Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 1
\pages 31--51
\mathnet{http://mi.mathnet.ru/ivm9639}
\crossref{https://doi.org/10.26907/0021-3446-2021-1-31-51}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 1
\pages 27--46
\crossref{https://doi.org/10.3103/S1066369X21010035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000618239300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100912281}
Linking options:
  • https://www.mathnet.ru/eng/ivm9639
  • https://www.mathnet.ru/eng/ivm/y2021/i1/p31
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025