Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 1, Pages 3–10
DOI: https://doi.org/10.26907/0021-3446-2021-1-3-10
(Mi ivm9637)
 

The solvability of a system of nonlinear equations

V. S. Mokeychev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
References:
Abstract: It is proved: if $\phi(\tau,\xi)$ is scalar continuous real function of arguments $\tau\in [a_{(n-1)},\ b_{(n-1)}]\subset R^{n-1},\ \xi\in [a,\ b]\subset R^{1}$ and $\phi(\tau,a) \phi(\tau,b)<0\ \forall \tau, $ then for each $\varepsilon >0$ exists a continuous $\phi_{0}(\tau,\xi),$ that $|\phi(\tau,\xi)- \phi_{0}(\tau,\xi)|<\varepsilon $ and the equation $\phi_{0}(\tau,\xi)=0$ has continuously depends on $\tau$ solution. The statement is suitable to a proof of a solvability finite system nonlinearity equations, to an estimation of a number of solutions. We give illustrating examples.
Keywords: equation, smallest solution, non uniqueness of solution.
Received: 22.03.2020
Revised: 22.03.2020
Accepted: 29.06.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 1, Pages 1–7
DOI: https://doi.org/10.3103/S1066369X21010011
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: V. S. Mokeychev, “The solvability of a system of nonlinear equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1, 3–10; Russian Math. (Iz. VUZ), 65:1 (2021), 1–7
Citation in format AMSBIB
\Bibitem{Mok21}
\by V.~S.~Mokeychev
\paper The solvability of a system of nonlinear equations
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/ivm9637}
\crossref{https://doi.org/10.26907/0021-3446-2021-1-3-10}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 1
\pages 1--7
\crossref{https://doi.org/10.3103/S1066369X21010011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000618239300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100949492}
Linking options:
  • https://www.mathnet.ru/eng/ivm9637
  • https://www.mathnet.ru/eng/ivm/y2021/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025