Abstract:
Let K be a root class of groups and G be an HNN-extension of a group B with subgroups H and K associated by an isomorphism φ:H→K. We obtain certain sufficient conditions for G to be residually a K‑group provided the set {h−1(hφ)∣h∈H} is a normal subgroup of B or there exists an automorphism α of B such that Hα=K. In particular, we find sufficient conditions for G to be residually solvable, residually periodic solvable, or residually finite solvable in the case when B is residually nilpotent while H and K are cyclic and map onto each other by an automorphism of B.
Citation:
E. A. Tumanova, “On the root-class residuality of certain HNN-extensions of groups”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 12, 41–50; Russian Math. (Iz. VUZ), 64:12 (2020), 38–45
\Bibitem{Tum20}
\by E.~A.~Tumanova
\paper On the root-class residuality of certain HNN-extensions of groups
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 12
\pages 41--50
\mathnet{http://mi.mathnet.ru/ivm9634}
\crossref{https://doi.org/10.26907/0021-3446-2020-12-41-50}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 12
\pages 38--45
\crossref{https://doi.org/10.3103/S1066369X20120051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607872200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099386308}
Linking options:
https://www.mathnet.ru/eng/ivm9634
https://www.mathnet.ru/eng/ivm/y2020/i12/p41
This publication is cited in the following 4 articles:
E. V. Sokolov, E. A. Tumanova, “The root-class residuality of some generalized free products and HNN-extensions”, Siberian Math. J., 64:2 (2023), 393–406
Sokolov V E., “Certain Residual Properties of Hnn-Extensions With Central Associated Subgroups”, Commun. Algebr., 50:3 (2022), 962–987
E. V. Sokolov, “The root-class residuality of the fundamental groups of graphs of groups”, Siberian Math. J., 62:4 (2021), 719–729
E. V. Sokolov, “Certain residual properties of generalized Baumslag-Solitar groups”, J. Algebra, 582 (2021), 1–25