Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 10, Pages 73–85
DOI: https://doi.org/10.26907/0021-3446-2020-10-73-85
(Mi ivm9620)
 

This article is cited in 9 scientific papers (total in 9 papers)

Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues

K. A. Mamedov

Urgench branch of Tashkent University of Information Technologies named after Muhammad al-Kwarizmi, 110 al-Kwarizmi str., Urgench, 220100 Republic of Uzbekistan
Full-text PDF (370 kB) Citations (9)
References:
Abstract: In this paper, the possibility of using the inverse scattering problem method to integrate the mKdV equation with a self-consistent source in the class of finite density functions in the case of moving simple eigenvalues of the corresponding spectral problem is shown.
Keywords: inverse scattering problem method, modified Korteweg-de Vries equation (mKdV), Dirac operator, Jost solution, eigenvalue, eigenfunction, scattering data, class of functions having finite density.
Received: 23.11.2019
Revised: 23.11.2019
Accepted: 25.03.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 10, Pages 66–78
DOI: https://doi.org/10.3103/S1066369X20100072
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: K. A. Mamedov, “Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 10, 73–85; Russian Math. (Iz. VUZ), 64:10 (2020), 66–78
Citation in format AMSBIB
\Bibitem{Mam20}
\by K.~A.~Mamedov
\paper Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 10
\pages 73--85
\mathnet{http://mi.mathnet.ru/ivm9620}
\crossref{https://doi.org/10.26907/0021-3446-2020-10-73-85}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 10
\pages 66--78
\crossref{https://doi.org/10.3103/S1066369X20100072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000589204500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096027487}
Linking options:
  • https://www.mathnet.ru/eng/ivm9620
  • https://www.mathnet.ru/eng/ivm/y2020/i10/p73
  • This publication is cited in the following 9 articles:
    1. G.U. Urazboev, I.I. Baltaeva, Sh.E. Atanazarova, “Analysis of the solitary wave solutions of the negative order modified Korteweg –de Vries equation with a self-consistent source”, Partial Differential Equations in Applied Mathematics, 2025, 101108  crossref
    2. U.A. Khoitmetov, Sh. K. Sobirov, “Integrirovanie uravneniya mKdF s zavisyaschimi ot vremeni koeffitsientami, s dopolnitelnym chlenom i s integralnym istochnikom v klasse bystroubyvayuschikh funktsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:2 (2024), 248–266  mathnet  crossref
    3. Sh. K. Sobirov, U. A. Hoitmetov, “Integration of the Modified Korteweg-de Vries Equation with Time-Dependent Coefficients and a Self-Consistent Source”, Sib Math J, 65:4 (2024), 971  crossref
    4. A. B. Khasanov, U.A. Hoitmetov, Sh. Q. Sobirov, “Integration of the mKdV Equation with nonstationary coefficients and additional terms in the case of moving eigenvalues”, Izv. IMI UdGU, 61 (2023), 137–155  mathnet  crossref
    5. G. U. Urazboev, A. B. Yakhshimuratov, M. M. Khasanov, “Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions”, Theoret. and Math. Phys., 217:2 (2023), 1689–1699  mathnet  crossref  crossref  mathscinet  adsnasa
    6. Sh. K. Sobirov, U.A. Khoitmetov, “Integrirovanie modifitsirovannogo uravneniya Kortevega — de Friza s zavisyaschimi ot vremeni koeffitsientami i s samosoglasovannym istochnikom”, Vladikavk. matem. zhurn., 25:3 (2023), 123–142  mathnet  crossref
    7. U. B. Muminov, A. B. Khasanov, “Zadacha Koshi dlya defokusiruyuschego nelineinogo uravneniya Shredingera s nagruzhennym chlenom”, Matem. tr., 25:1 (2022), 102–133  mathnet  crossref
    8. U. B. Muminov, A. B. Khasanov, “The Cauchy Problem for the Defocusing Nonlinear Schrödinger Equation with a Loaded Term”, Sib. Adv. Math., 32:4 (2022), 277  crossref
    9. A. B. Khasanov, U. A. Hoitmetov, “On integration of the loaded mKdV equation in the class of rapidly decreasing functions”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 38 (2021), 19–35  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :85
    References:34
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025