Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 10, Pages 12–23
DOI: https://doi.org/10.26907/0021-3446-2020-10-12-23
(Mi ivm9615)
 

On the radial symmetry property for harmonic functions

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University, 24 Universitetskaya str., Donetsk, 83001 Ukraine
References:
Abstract: Let $\Gamma$ be a closed smooth Jordan curve in the complex plane $\mathbb{C}$, $G$ be a bounded domain in $\mathbb{C}$ with boundary $\Gamma$, and let $\overline{G}=G\cup\Gamma$. We study functions that are continuous in $\mathbb{C}\setminus G$ and harmonic in $\mathbb{C}\setminus\overline{G}$ that grow more slowly than the function $|z|^2$ at $z\to\infty$. It is shown that if in the class of such functions there exists a solution to the overdetermined Neumann boundary value problem in which the function on $\Gamma$ and the existence and being equal to unity of the normal derivative of a function $\mu$ -almost everywhere on $\Gamma$ then the domain $G$ is a disk (Theorem 1). In this case, the solution is the only one and up to a constant coincides with the fundamental solution for the Laplace operator in $\mathbb{\mathbb{C}}$ and a singularity in the center of the disk $G$. The proof of Theorem 1 is based on the application of the conformal mapping of the exterior of the unit disk onto the domain $\mathbb{C}\setminus \overline{G}$. This mapping allows us to reduce the original problem for the domain $\mathbb{C}\setminus \overline{G}$ to overdetermined boundary value problem for the exterior of the disk in which the main difficulty is the heterogeneity of the boundary condition for the normal derivative. To study this condition some subtle results were required on the boundary properties of a function that performs the indicated the conformal mapping as well as some properties of the Hardy classes $H_p$ in the unit disk. Theorem 2 of the paper shows that in the general case the conditions in Theorem 1 cannot be relaxed. It states the existence of a bounded domain $G\subset\mathbb{C}$ different from a disk with a smooth Jordan boundary $\Gamma$ and functions $f_1,f_2,f_3\in C(\mathbb{C}\setminus G)$ harmonic in $\mathbb{C}\setminus\overline{G}$ for each of which exactly one of the conditions of Theorem 1 is not satisfied.
Keywords: harmonic function, boundary behavior, overdetermined problem.
Received: 24.11.2019
Revised: 22.01.2020
Accepted: 25.03.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 10, Pages 9–19
DOI: https://doi.org/10.3103/S1066369X20100023
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. V. Volchkov, Vit. V. Volchkov, “On the radial symmetry property for harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 10, 12–23; Russian Math. (Iz. VUZ), 64:10 (2020), 9–19
Citation in format AMSBIB
\Bibitem{VolVol20}
\by V.~V.~Volchkov, Vit.~V.~Volchkov
\paper On the radial symmetry property for harmonic functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 10
\pages 12--23
\mathnet{http://mi.mathnet.ru/ivm9615}
\crossref{https://doi.org/10.26907/0021-3446-2020-10-12-23}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 10
\pages 9--19
\crossref{https://doi.org/10.3103/S1066369X20100023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000589204500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096001556}
Linking options:
  • https://www.mathnet.ru/eng/ivm9615
  • https://www.mathnet.ru/eng/ivm/y2020/i10/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :56
    References:31
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024