Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 9, Pages 15–24
DOI: https://doi.org/10.26907/0021-3446-2020-9-15-24
(Mi ivm9608)
 

This article is cited in 6 scientific papers (total in 6 papers)

A small intervals theorem for subharmonic functions

L. A. Gabdrakhmanova, B. N. Khabibullin

Bashkir State University, 32 Z. Validi str., Ufa, 450076 Russia
Full-text PDF (434 kB) Citations (6)
References:
Abstract: Let $\mathbb{C}$ be the complex plane, $E$ be a measurable subset in a segment $[0, R]$ of the positive semiaxis $\mathbb{R}^+$, $u\not\equiv - \infty$ be a subharmonic function on $\mathbb{C}$. The main result of this article is an upper estimate of the integral of the module $|u|$ over a subset of $E$ through the maximum of the function $u$ on a circle of radius $R$ centered at zero and a linear Lebesgue measure of subset $E$. Our result develops one of the classical theorems of R. Nevanlinna in the case of $E=[0, R]$ and versions of so-called Small Arcs Lemma by Edrei – Fuchs for small intervals on $\mathbb{R}^+$ from the works of A. F. Grishin, M. L. Sodin, T. I. Malyutina. Our obtained estimate is uniform in the sense that the constants in the estimates are absolute and do not depend on the subharmonic function under the semi-normalization $u(0)\geq 0$.
Keywords: subharmonic function, Nevanlinna theory, Small Arcs Lemma by Edrey – Fuchs, lower estimate of subharmonic function, entire function.
Funding agency Grant number
Russian Science Foundation 18-11-00002
Received: 20.10.2019
Revised: 29.11.2019
Accepted: 18.12.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 9, Pages 12–20
DOI: https://doi.org/10.3103/S1066369X20090029
Bibliographic databases:
Document Type: Article
UDC: 517.574: 517.547
Language: Russian
Citation: L. A. Gabdrakhmanova, B. N. Khabibullin, “A small intervals theorem for subharmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9, 15–24; Russian Math. (Iz. VUZ), 64:9 (2020), 12–20
Citation in format AMSBIB
\Bibitem{GabKha20}
\by L.~A.~Gabdrakhmanova, B.~N.~Khabibullin
\paper A small intervals theorem for subharmonic functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 9
\pages 15--24
\mathnet{http://mi.mathnet.ru/ivm9608}
\crossref{https://doi.org/10.26907/0021-3446-2020-9-15-24}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 9
\pages 12--20
\crossref{https://doi.org/10.3103/S1066369X20090029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000578069000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092628915}
Linking options:
  • https://www.mathnet.ru/eng/ivm9608
  • https://www.mathnet.ru/eng/ivm/y2020/i9/p15
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :49
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024