|
This article is cited in 6 scientific papers (total in 6 papers)
A small intervals theorem for subharmonic functions
L. A. Gabdrakhmanova, B. N. Khabibullin Bashkir State University, 32 Z. Validi str., Ufa, 450076 Russia
Abstract:
Let $\mathbb{C}$ be the complex plane, $E$ be a measurable subset in a segment $[0, R]$ of the positive semiaxis $\mathbb{R}^+$, $u\not\equiv - \infty$ be a subharmonic function on $\mathbb{C}$. The main result of this article is an upper estimate of the integral of the module $|u|$ over a subset of $E$ through the maximum of the function $u$ on a circle of radius $R$ centered at zero and a linear Lebesgue measure of subset $E$. Our result develops one of the classical theorems of R. Nevanlinna in the case of $E=[0, R]$ and versions of so-called Small Arcs Lemma by Edrei – Fuchs for small intervals on $\mathbb{R}^+$ from the works of A. F. Grishin, M. L. Sodin, T. I. Malyutina. Our obtained estimate is uniform in the sense that the constants in the estimates are absolute and do not depend on the subharmonic function under the semi-normalization $u(0)\geq 0$.
Keywords:
subharmonic function, Nevanlinna theory, Small Arcs Lemma by Edrey – Fuchs, lower estimate of subharmonic function, entire function.
Received: 20.10.2019 Revised: 29.11.2019 Accepted: 18.12.2019
Citation:
L. A. Gabdrakhmanova, B. N. Khabibullin, “A small intervals theorem for subharmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 9, 15–24; Russian Math. (Iz. VUZ), 64:9 (2020), 12–20
Linking options:
https://www.mathnet.ru/eng/ivm9608 https://www.mathnet.ru/eng/ivm/y2020/i9/p15
|
Statistics & downloads: |
Abstract page: | 170 | Full-text PDF : | 49 | References: | 28 |
|