Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 7, Pages 45–55
DOI: https://doi.org/10.26907/0021-3446-2020-7-45-55
(Mi ivm9593)
 

This article is cited in 1 scientific paper (total in 1 paper)

Diophantine equation generated by the maximal subfield of a circular field

I. G. Galyautdinova, E. E. Lavrentyevab

a Kazan, Russia
b Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (397 kB) Citations (1)
References:
Abstract: Using the fundamental basis of the field $L_9=\mathbb{Q} (2\cos(\pi/9))$, the form $N_{L_9}(\gamma)=f(x, y, z)$ is found and the Diophantine equation $f(x,y,z)=a$ is solved. A similar scheme is used to construct the form $N_{L_7}(\gamma)=g(x,y,z)$. The Diophantine equation $g (x, y, z)=a$ is solved.
Keywords: algebraic integer number, fundamental basis of an algebraic number field, norm of algebraic number, basic units of an algebraic field, diophantine equation.
Received: 04.06.2019
Revised: 04.03.2020
Accepted: 25.03.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 7, Pages 38–47
DOI: https://doi.org/10.3103/S1066369X20070051
Bibliographic databases:
Document Type: Article
UDC: 511.61
Language: Russian
Citation: I. G. Galyautdinov, E. E. Lavrentyeva, “Diophantine equation generated by the maximal subfield of a circular field”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 7, 45–55; Russian Math. (Iz. VUZ), 64:7 (2020), 38–47
Citation in format AMSBIB
\Bibitem{GalLav20}
\by I.~G.~Galyautdinov, E.~E.~Lavrentyeva
\paper Diophantine equation generated by the maximal subfield of a circular field
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 7
\pages 45--55
\mathnet{http://mi.mathnet.ru/ivm9593}
\crossref{https://doi.org/10.26907/0021-3446-2020-7-45-55}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 7
\pages 38--47
\crossref{https://doi.org/10.3103/S1066369X20070051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000560140900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089425704}
Linking options:
  • https://www.mathnet.ru/eng/ivm9593
  • https://www.mathnet.ru/eng/ivm/y2020/i7/p45
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024