Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 7, Pages 3–9
DOI: https://doi.org/10.26907/0021-3446-2020-7-3-9
(Mi ivm9589)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the sum of narrow orthogonally additive operators

N. M. Abasov

Moscow Aviation Institute (National Research University), 3 Orshanskaya str., Moscow, 121552 Russia
Full-text PDF (352 kB) Citations (8)
References:
Abstract: In this article we consider orthogonally additive operators defined on a vector lattice $E$ and taking value in a Banach space $X$. We say that an orthogonally additive operator $T:E\to X$ is a narrow if for every $e\in E$ and $\varepsilon>0$ there exists a decomposition $e=e_1\sqcup e_2$ of $e$ into a sum of two disjoint fragments $e_1$ and $e_2$ such that $\|Te_1-Te_2\|<\varepsilon$. It is proved that the sum of two orthogonally additive operators $S+T$ defined on Dedekind complete, atomless vector lattice and taking value in Banach space, where $S$ is a narrow operator and $T$ is a $C$-compact laterally-to-norm continuous operator, is a narrow operator as well.
Keywords: vector lattice, orthogonally additive operator, narrow operator, laterally-to-norm continuous operator, $C$-compact operator.
Received: 25.06.2019
Revised: 25.06.2019
Accepted: 25.09.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 7, Pages 1–6
DOI: https://doi.org/10.3103/S1066369X20070014
Bibliographic databases:
Document Type: Article
UDC: 517.98:\,519.46
Language: Russian
Citation: N. M. Abasov, “On the sum of narrow orthogonally additive operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 7, 3–9; Russian Math. (Iz. VUZ), 64:7 (2020), 1–6
Citation in format AMSBIB
\Bibitem{Aba20}
\by N.~M.~Abasov
\paper On the sum of narrow orthogonally additive operators
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 7
\pages 3--9
\mathnet{http://mi.mathnet.ru/ivm9589}
\crossref{https://doi.org/10.26907/0021-3446-2020-7-3-9}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 7
\pages 1--6
\crossref{https://doi.org/10.3103/S1066369X20070014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000560140900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089414619}
Linking options:
  • https://www.mathnet.ru/eng/ivm9589
  • https://www.mathnet.ru/eng/ivm/y2020/i7/p3
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024