Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 6, Pages 65–72
DOI: https://doi.org/10.26907/0021-3446-2020-6-65-72
(Mi ivm9583)
 

This article is cited in 4 scientific papers (total in 4 papers)

Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$

M. Sh. Shabozova, M. S. Saidusaynovb

a Tajik National University, Dushanbe, 734025 Republic of Tajikistan
b University of Central Asia, Dushanbe, SPCE, 734013 Republic of Tajikistan
Full-text PDF (377 kB) Citations (4)
References:
Abstract: The sharp inequalities of Jackson-Stechkin type inequalities between the best approximation $E_{n-s-1}(f^{(s)}) (s=\overline{0,r}, r\in\mathbb{N})$ of successive derivatives $f^{(s)} (s=\overline{0,r}, r\in\mathbb{N})$ of analytic functions $f\in L_{2}(U)$ in the disk $U:=\left\{z: |z|<1\right\}$ as for special module of continuity $\Omega_{m}$ of $m$th order satisfying the condition
$$\Omega_{m}\left(f^{(r)},t\right)_{2}\leq\Phi(t), 0<t<1,$$
where $\Phi$ is give majorant and also for Peetre $\mathscr{K}$-functional satisfying the constraint
$$\mathscr{K}_{m}\left(f^{(r)},t^{m}\right)\leq\Phi(t^{m}), 0<t<1,$$
were obtained.
Keywords: the generalized module of continuity, generalized translation operator, orthonormal system of functions, Jackson–Stechkin inequality, $\mathscr{K}$-functional.
Received: 25.06.2019
Revised: 31.07.2019
Accepted: 25.09.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 6, Pages 56–62
DOI: https://doi.org/10.3103/S1066369X20060080
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, M. S. Saidusaynov, “Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6, 65–72; Russian Math. (Iz. VUZ), 64:6 (2020), 56–62
Citation in format AMSBIB
\Bibitem{ShaSai20}
\by M.~Sh.~Shabozov, M.~S.~Saidusaynov
\paper Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 6
\pages 65--72
\mathnet{http://mi.mathnet.ru/ivm9583}
\crossref{https://doi.org/10.26907/0021-3446-2020-6-65-72}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 6
\pages 56--62
\crossref{https://doi.org/10.3103/S1066369X20060080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556993500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089065223}
Linking options:
  • https://www.mathnet.ru/eng/ivm9583
  • https://www.mathnet.ru/eng/ivm/y2020/i6/p65
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :89
    References:24
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024