Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 5, Pages 39–54
DOI: https://doi.org/10.26907/0021-3446-2020-5-39-54
(Mi ivm9569)
 

This article is cited in 5 scientific papers (total in 5 papers)

Hypercomplex numbers in some geometries of two sets. II

V. A. Kyrov

Gorny Altai State University, 1 Lenkin str., Gorno-Altaisk, 649000 Russia
Full-text PDF (381 kB) Citations (5)
References:
Abstract: The main task of the theory of phenomenologically symmetric geometries of two sets is the classification of such geometries. In this paper, by complexing with associative hypercomplex numbers, functions of a pair of points of new geometries are found by the functions of a pair of points of some well-known phenomenologically symmetric geometries of two sets (PS of GTS). The equations of the groups of motions of these geometries are also found. The phenomenological symmetry of these geometries is established, that is, functional relationships are found between the functions of a pair of points for a certain finite number of arbitrary points. In particular, the $s$-component functions of a pair of points of the same ranks are determined by single-component functions of a pair of points of the PS of GTS ranks $(n,n)$ and $(n + 1,n)$. Finite equations of motion group and equation expressing their phenomenological symmetry are found.
Keywords: geometry of two sets, phenomenological symmetry, group symmetry, hyper-complex number.
Received: 11.06.2019
Revised: 25.07.2019
Accepted: 25.09.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 5, Pages 31–48
DOI: https://doi.org/10.3103/S1066369X20050047
Bibliographic databases:
Document Type: Article
UDC: 514.16
Language: Russian
Citation: V. A. Kyrov, “Hypercomplex numbers in some geometries of two sets. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5, 39–54; Russian Math. (Iz. VUZ), 64:5 (2020), 31–48
Citation in format AMSBIB
\Bibitem{Kyr20}
\by V.~A.~Kyrov
\paper Hypercomplex numbers in some geometries of two sets.~II
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 5
\pages 39--54
\mathnet{http://mi.mathnet.ru/ivm9569}
\crossref{https://doi.org/10.26907/0021-3446-2020-5-39-54}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 5
\pages 31--48
\crossref{https://doi.org/10.3103/S1066369X20050047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000545415600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086866460}
Linking options:
  • https://www.mathnet.ru/eng/ivm9569
  • https://www.mathnet.ru/eng/ivm/y2020/i5/p39
    Cycle of papers
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :39
    References:31
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024