Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 5, Pages 3–10
DOI: https://doi.org/10.26907/0021-3446-2020-5-3-10
(Mi ivm9566)
 

About the spectral properties of one three-partial model operator

G. P. Arzikulova, Yu. Kh. Eshkabilovb

a Tashkent State Technical University named after Islam Karimov, 2 Universitetskaya str., Tashkent, 100097 Republic of Uzbekistan
b Karshi State University, 17 Kuchabog str., Karshi, 180100 Republic of Uzbekistan
References:
Abstract: We investigate the structure of the essential spectrum of one of the three particle model operator $H$. We prove the existence of a negative eigenvalues of the operator H and obtaine the estimate for a number of negative eigenvalues of the operator $H$.
Keywords: essential spectrum, discrete spectrum, lower bound of the essential spectrum, three particle discrete operator.
Funding agency Grant number
Academy of Sciences of the Republic of Uzbekistan ОТ-Ф-4.03
Received: 18.05.2019
Revised: 29.10.2019
Accepted: 18.12.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 5, Pages 1–7
DOI: https://doi.org/10.3103/S1066369X20050011
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: G. P. Arzikulov, Yu. Kh. Eshkabilov, “About the spectral properties of one three-partial model operator”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5, 3–10; Russian Math. (Iz. VUZ), 64:5 (2020), 1–7
Citation in format AMSBIB
\Bibitem{ArzEsh20}
\by G.~P.~Arzikulov, Yu.~Kh.~Eshkabilov
\paper About the spectral properties of one three-partial model operator
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 5
\pages 3--10
\mathnet{http://mi.mathnet.ru/ivm9566}
\crossref{https://doi.org/10.26907/0021-3446-2020-5-3-10}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 5
\pages 1--7
\crossref{https://doi.org/10.3103/S1066369X20050011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000545415600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086874163}
Linking options:
  • https://www.mathnet.ru/eng/ivm9566
  • https://www.mathnet.ru/eng/ivm/y2020/i5/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :57
    References:35
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025