Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 4, Pages 64–73
DOI: https://doi.org/10.26907/0021-3446-2020-4-64-73
(Mi ivm9562)
 

This article is cited in 1 scientific paper (total in 1 paper)

The approximation of functions by partial sums of the Fourier series in polynomials orthogonal on arbitrary grids

A. A. Nurmagomedov

M.M. Dzhambulatov Dagestan State Agrarian University, 180 M. Gadzhiev str., Makhachkala, 367032 Russia
Full-text PDF (401 kB) Citations (1)
References:
Abstract: For arbitrary continuous function $f(t)$ on the segment $[-1, 1]$ we construct discrete sums by Fourier $S_{n,N}(f,t)$ on system polynomials forming an orthonormals system on any finite non-uniform set $T_N = \{t_j\}_{j=0}^{N-1}$ of $N$ points from segment $[-1, 1]$ with weight $\Delta{t_j} = t_{j+1} - t_j.$ Approximation properties of the constructing partial sums $S_{n,N}(f,t)$ order $n\leq{N-1}$ are investiga-ted. Namely a two-sided pointwise estimate is obtained for the Lebesgue function $L_{n,N}(t)$ discrete Fourier sums for $n=O(\delta_N^{-1/5}), \delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j}$. Coherently also is investigated the question of the convergence of $S_{n,N}(f,t)$ to $f(t).$ In particular, we obtaine the estimation deflection partial sums $S_{n,N}(f,t)$ from $f(t)$ for $n=O(\delta_N^{-1/5})$ which is depended on $n$ and position of a point $t$ on the $[-1, 1].$
Keywords: polynomial, orthogonal system, asymptotic formula, discrete Fourier sums, Lebesgue function.
Received: 26.03.2019
Revised: 26.03.2019
Accepted: 19.06.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 4, Pages 54–63
DOI: https://doi.org/10.3103/S1066369X20040064
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. A. Nurmagomedov, “The approximation of functions by partial sums of the Fourier series in polynomials orthogonal on arbitrary grids”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4, 64–73; Russian Math. (Iz. VUZ), 64:4 (2020), 54–63
Citation in format AMSBIB
\Bibitem{Nur20}
\by A.~A.~Nurmagomedov
\paper The approximation of functions by partial sums of the Fourier series in polynomials
orthogonal on arbitrary grids
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 4
\pages 64--73
\mathnet{http://mi.mathnet.ru/ivm9562}
\crossref{https://doi.org/10.26907/0021-3446-2020-4-64-73}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 4
\pages 54--63
\crossref{https://doi.org/10.3103/S1066369X20040064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529686700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083975589}
Linking options:
  • https://www.mathnet.ru/eng/ivm9562
  • https://www.mathnet.ru/eng/ivm/y2020/i4/p64
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :67
    References:33
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024