|
This article is cited in 1 scientific paper (total in 1 paper)
Integral estimates for Laguerre polynomials with exponential weight function
R. M. Gadzhimirzaev Dagestan Federal Research Center of the Russian Academy of Sciences, 45 M. Gadjieva str., Makhachkala, 367000 Russia
Abstract:
In this paper we consider the system of functions $\lambda_{1+n}(x)$ generated by the system of Laguerre function. For the functions $\lambda_{1+n}(x)$ different representations in terms of the Laguerre polynomials $L_n^\alpha(x)$ are obtained. Using these representations and asymptotic formulas for the $L_n^\alpha(x)$ polynomials, we investigated the behavior of the functions $\lambda_{1+n}(x)$ on $[0,\infty)$ as $n\rightarrow\infty$ and obtained estimates similar to those for the Laguerre functions
Keywords:
Laguerre polynomials, Laguerre functions, asymptotic properties.
Received: 05.03.2019 Revised: 17.09.2019 Accepted: 25.09.2019
Citation:
R. M. Gadzhimirzaev, “Integral estimates for Laguerre polynomials with exponential weight function”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4, 16–25; Russian Math. (Iz. VUZ), 64:4 (2020), 12–20
Linking options:
https://www.mathnet.ru/eng/ivm9558 https://www.mathnet.ru/eng/ivm/y2020/i4/p16
|
Statistics & downloads: |
Abstract page: | 372 | Full-text PDF : | 103 | References: | 40 | First page: | 4 |
|