|
On the geometry of similarly homogeneous $\mathbb{R}$-trees
P. D. Andreev, A. I. Bulygin Northern (Arctic) Federal University named after M.V. Lomonosov, 17 Severnaya Dvina Emb., Arkhangelsk, 163002 Russia
Abstract:
We study the geometry of the locally complete similarly homogeneous $\mathbb R$-trees. We prove the existence theorem for the class of vertical $\mathbb R$-trees which are not strongly vertical introduced earlier. The analogous method is applicable to other classes of locally complete similarly homogeneous $\mathbb R$-trees.
Keywords:
similarly homogenous space, vertical $\mathbb R$-tree, saw-like function.
Received: 25.03.2019 Revised: 25.03.2019 Accepted: 19.06.2019
Citation:
P. D. Andreev, A. I. Bulygin, “On the geometry of similarly homogeneous $\mathbb{R}$-trees”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4, 3–15; Russian Math. (Iz. VUZ), 64:4 (2020), 1–11
Linking options:
https://www.mathnet.ru/eng/ivm9557 https://www.mathnet.ru/eng/ivm/y2020/i4/p3
|
Statistics & downloads: |
Abstract page: | 233 | Full-text PDF : | 59 | References: | 24 | First page: | 3 |
|