Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 3, Pages 64–73
DOI: https://doi.org/10.26907/0021-3446-2020-3-64-73
(Mi ivm9551)
 

This article is cited in 2 scientific papers (total in 2 papers)

On elliptic homogeneous differential operators in grand spaces

S. M. Umarkhadzhiev

Academy Sciences of the Chechen Republic, Kh. Ibrahimov Complex Scientific Research Institute of the Russian Academy of Sciences, 13 M. Esembaev Ave., Grozny, 364024 Russia
Full-text PDF (424 kB) Citations (2)
References:
Abstract: We give an application of so called grand Lebesgue and grand Sobolev spaces, intensively studied during last decades, to differential equations in partial derivatives. In the case of unbounded domains such spaces are defined with the use of so called grandizers. Under some natural assumptions on the choice of grandizers, we prove the existence, in some grand Sobolev space, of solution to the equation $P_m(D)u(x)=f(x),$ $x\in \mathbb{R}^n,$ $m<n,$ with the right-hand side in the corresponding grand Lebesgue space, where $P_m(D)$ is an elliptic homogeneous differential operator with constant coefficients of even order $m$. Also, for such polynomials in the general case we improve some known facts for the fundamental solution of the operator $P_m(D)$: we construct it in the closed form lither in terms of spherical hypersingular integrals or in terms of some averages along plane sections of the unit sphere.
Keywords: elliptic homogeneous differential operator, grand Lebesgue space, grand Sobolev space, grandizer, fundamental solution, spherical hypersingular integral.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00094_а
Received: 02.11.2018
Revised: 02.11.2018
Accepted: 18.12.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 3, Pages 57–65
DOI: https://doi.org/10.3103/S1066369X20030056
Bibliographic databases:
Document Type: Article
UDC: 517.982: 517.968
Language: Russian
Citation: S. M. Umarkhadzhiev, “On elliptic homogeneous differential operators in grand spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 3, 64–73; Russian Math. (Iz. VUZ), 64:3 (2020), 57–65
Citation in format AMSBIB
\Bibitem{Uma20}
\by S.~M.~Umarkhadzhiev
\paper On elliptic homogeneous differential operators in grand spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 3
\pages 64--73
\mathnet{http://mi.mathnet.ru/ivm9551}
\crossref{https://doi.org/10.26907/0021-3446-2020-3-64-73}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 3
\pages 57--65
\crossref{https://doi.org/10.3103/S1066369X20030056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528211100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083792573}
Linking options:
  • https://www.mathnet.ru/eng/ivm9551
  • https://www.mathnet.ru/eng/ivm/y2020/i3/p64
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :67
    References:23
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024