Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 11, Pages 54–63
DOI: https://doi.org/10.26907/0021-3446-2019-11-54-63
(Mi ivm9516)
 

This article is cited in 2 scientific papers (total in 2 papers)

The contact metric connection with skew torsion

V. I. Panzhenskii, T. R. Klimova

Penza State University, 37 Lermontov str., Penza, 440026 Russia
Full-text PDF (362 kB) Citations (2)
References:
Abstract: We prove that there is only one contact metric connection with skew-torsion on the Heisenberg group endowed with a left-invariant Sasakian structure. The expression of this connection through the contact form and the metric tensor is received. It is shown that the torsion tensor and the curvature tensor are constant and the sectional curvature varies between $-1$ and $0$. It is proved that the obtained connection is the contact metric connection for all $k$-contact metric structures, therefore it is the contact metric connection for all Sasakian structures.
Keywords: Heisenberg group, contact metric structure, connection with skew-torsion, sectional curvature.
Received: 23.10.2018
Revised: 21.03.2019
Accepted: 27.03.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 11, Pages 47–55
DOI: https://doi.org/10.3103/S1066369X19110070
Bibliographic databases:
Document Type: Article
UDC: 514.763
Language: Russian
Citation: V. I. Panzhenskii, T. R. Klimova, “The contact metric connection with skew torsion”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 11, 54–63; Russian Math. (Iz. VUZ), 63:11 (2019), 47–55
Citation in format AMSBIB
\Bibitem{PanKli19}
\by V.~I.~Panzhenskii, T.~R.~Klimova
\paper The contact metric connection with skew torsion
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 11
\pages 54--63
\mathnet{http://mi.mathnet.ru/ivm9516}
\crossref{https://doi.org/10.26907/0021-3446-2019-11-54-63}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 11
\pages 47--55
\crossref{https://doi.org/10.3103/S1066369X19110070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511667600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077035585}
Linking options:
  • https://www.mathnet.ru/eng/ivm9516
  • https://www.mathnet.ru/eng/ivm/y2019/i11/p54
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :38
    References:30
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024