Abstract:
We prove that for a compact X the space Pf(X) is an absolute neighbourhood retract if and only if X is an absolute neighbourhood retract. Futher, we demonstrate that a functor Pf preserves the property of a compact to be Q-manifold or Hilbert cube, preserves the propetry of a map to be absolute neighbourhood retract in a class of compact, to be Q-manifold or Hilbetr cube (finite sum of Hilbert cube).
Keywords:
propability measure, compact Hausdorff space (compact), retract, A(N)R-space.
Citation:
A. A. Zaitov, “Geometrical and topological properties of a subspace Pf(X) of probability measures”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10, 28–37; Russian Math. (Iz. VUZ), 63:10 (2019), 24–32
\Bibitem{Zai19}
\by A.~A.~Zaitov
\paper Geometrical and topological properties of a subspace $P_f(X)$ of probability measures
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 10
\pages 28--37
\mathnet{http://mi.mathnet.ru/ivm9504}
\crossref{https://doi.org/10.26907/0021-3446-2019-10-28-37}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 10
\pages 24--32
\crossref{https://doi.org/10.3103/S1066369X19100049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000498483400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075576440}
Linking options:
https://www.mathnet.ru/eng/ivm9504
https://www.mathnet.ru/eng/ivm/y2019/i10/p28
This publication is cited in the following 13 articles:
A. Ya. Ishmetov, “Functor of Idempotent Probability Measures with Compact Support and Open Mappings”, J Math Sci, 278:3 (2024), 463
Abror Tagaymurotov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 020012
R. E. Jiemuratov, “On the Dimension of the Space of Weakly Additive Functionals”, Math. Notes, 113:3 (2023), 345–355
A. A. Zaitov, D. T. Eshkobilova, “Dugundji Compacta and the Space of Idempotent Probability Measures”, Math. Notes, 114:4 (2023), 433–442
Kh. Kholturaev, “On Z-Sets in the Space of Idempotent Probability Measures”, Math. Notes, 111:6 (2022), 940–953
Adilbek Atakhanovich Zaitov, Khamidjon Kurbanov, “When is the space of semi-additive functionals an absolute (neighbourhood) retract?”, PIGC, 15:2 (2022), 86
A. A. Zaitov, Kh. F. Kholturayev, “On Some Properties of Infinite Iterations of the Functor of Idempotent Probability Measures”, Lobachevskii J Math, 43:8 (2022), 2341
A. A. Borubaev, D. T. Eshkobilova, “The functor of idempotent probability measures and maps with uniformity properties of uniform spaces”, Eurasian Math. J., 12:3 (2021), 29–41
A. Ya. Ishmetov, “Funktor idempotentnykh veroyatnostnykh mer s kompaktnym nositelem i otkrytye otobrazheniya”, Nauka — tekhnologiya — obrazovanie — matematika — meditsina, SMFN, 67, no. 4, Rossiiskii universitet druzhby narodov, M., 2021, 693–706
Kh. F. Kholturayev, “Geometrical properties of the space of idempotent probability measures”, Appl. Gen. Topol., 22:2 (2021), 399–415
A. A. Zaitov, “On a metric on the space of idempotent probability measures”, Appl. Gen. Topol., 21:1 (2020), 35–51
Kh. Kurbanov, S. Yodgarov, “A functor IS in the Category Compact Hausdorff Spaces”, BSP, 6:3 (2020), 13
A. A. Zaitov, A. Ya. Ishmetov, “Homotopy Properties of the Space If(X) of Idempotent Probability Measures”, Math. Notes, 106:4 (2019), 562–571