Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 8, Pages 62–78
DOI: https://doi.org/10.26907/0021-3446-2019-8-62-78
(Mi ivm9492)
 

This article is cited in 14 scientific papers (total in 14 papers)

The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions

M. V. Turbin, A. S. Ustiuzhaninova

Voronezh State University, 1 Universitetskaya sq., Voronezh, 394018 Russia
References:
Abstract: In the paper we prove the existence of weak solutions for the initial-boundary value problem describing the motion of weakly concentrated aqueous solutions of polymers. The proof is based on the approximation-topological approach. At the first step we prove the operator equation which is equivalent to the weak formulation of the considered problem is approximated by another operator equation with good properties and the solvability of this equation. At the second step, the passage to the limit is made, i. e., it is shown that from a sequence of solutions one can extract a subsequence that converges weakly to the solution of the original problem as the parameter of approximation tends to zero.
Keywords: initial-boundary value problem, model of aqueous solutions of polymers, weak solution, approximation-topological approach, operator equation, a priori estimate, Leray–Schauder degree theory.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0037
Received: 15.06.2018
Revised: 15.06.2018
Accepted: 19.12.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 8, Pages 54–69
DOI: https://doi.org/10.3103/S1066369X19080061
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: M. V. Turbin, A. S. Ustiuzhaninova, “The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 8, 62–78; Russian Math. (Iz. VUZ), 63:8 (2019), 54–69
Citation in format AMSBIB
\Bibitem{TurUst19}
\by M.~V.~Turbin, A.~S.~Ustiuzhaninova
\paper The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 8
\pages 62--78
\mathnet{http://mi.mathnet.ru/ivm9492}
\crossref{https://doi.org/10.26907/0021-3446-2019-8-62-78}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 8
\pages 54--69
\crossref{https://doi.org/10.3103/S1066369X19080061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485307700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072065614}
Linking options:
  • https://www.mathnet.ru/eng/ivm9492
  • https://www.mathnet.ru/eng/ivm/y2019/i8/p62
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :109
    References:33
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024