Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 8, Pages 3–12
DOI: https://doi.org/10.26907/0021-3446-2019-8-3-12
(Mi ivm9487)
 

This article is cited in 1 scientific paper (total in 1 paper)

A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator

V. S. Abramov, A. A. Bobodzhanov, M. A. Bobodzhanova

National research University "MEI", 14 Krasnokazarmennaya str. , Moscow, 111250 Russia
Full-text PDF (356 kB) Citations (1)
References:
Abstract: The Lomov regularization method is generalized on weakly nonlinear singularly perturbed problems in the case of intersection of the roots of the characteristic equation of the limit operator. To construct asymptotic solutions, we use the idea of initial problems with the use of normal forms, first realized in nonlinear systems by Safonov V.F. and Bobodzhanov A.A.
Keywords: singularly perturbed, normal form, regularization, asymptotic convergence.
Received: 17.06.2018
Revised: 17.06.2018
Accepted: 26.09.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 8, Pages 1–9
DOI: https://doi.org/10.3103/S1066369X19080012
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: V. S. Abramov, A. A. Bobodzhanov, M. A. Bobodzhanova, “A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 8, 3–12; Russian Math. (Iz. VUZ), 63:8 (2019), 1–9
Citation in format AMSBIB
\Bibitem{AbrBobBob19}
\by V.~S.~Abramov, A.~A.~Bobodzhanov, M.~A.~Bobodzhanova
\paper A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 8
\pages 3--12
\mathnet{http://mi.mathnet.ru/ivm9487}
\crossref{https://doi.org/10.26907/0021-3446-2019-8-3-12}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 8
\pages 1--9
\crossref{https://doi.org/10.3103/S1066369X19080012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485307700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072069665}
Linking options:
  • https://www.mathnet.ru/eng/ivm9487
  • https://www.mathnet.ru/eng/ivm/y2019/i8/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :104
    References:31
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024