Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 4, Pages 15–26
DOI: https://doi.org/10.26907/0021-3446-2019-4-15-26
(Mi ivm9451)
 

This article is cited in 9 scientific papers (total in 9 papers)

On solving intial-boundary value problem for system of equations in partial derivatives of the third order

A. T. Assanova

Institute of Mathematics and Mathematical Modeling, 125 Pushkin str., Almaty, 050010, Kazakhstan
Full-text PDF (370 kB) Citations (9)
References:
Abstract: We consider the initial-boundary value problem for the system of partial differential equations of third order. We investigate the questions of an existence unique classical solution to the considering problem and approaches of its construction. By the introduction of new unknown function the initial-boundary value problem for the system of partial differential equations of third order is reduced to an equivalent nonlocal problem with integral condition for the system of integro-differential equations of hyperbolic type and functional relation. Conditions of a unique solvability to the nonlocal problem with integral condition for the system of integro-differential equations hyperbolic type and functional relation are obtained based on the method of introduction functional parameters. Algorithms for finding a solution of the equivalent problem are proposed and their convergence are proved. Conditions of the existence unique classical solution to the initial-boundary value problem for the system of partial differential equations of third order are established in the terms of initial data.
Keywords: system of partial differential equations of third order, initial-boundary value problem, system of integro-differential equations of hyperbolic type, nonlocal problem, integral condition, solvability, algorithm.
Received: 15.03.2018
Revised: 15.03.2018
Accepted: 20.06.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 4, Pages 12–22
DOI: https://doi.org/10.3103/S1066369X19040029
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: A. T. Assanova, “On solving intial-boundary value problem for system of equations in partial derivatives of the third order”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4, 15–26; Russian Math. (Iz. VUZ), 63:4 (2019), 12–22
Citation in format AMSBIB
\Bibitem{Ass19}
\by A.~T.~Assanova
\paper On solving intial-boundary value problem for system of equations in partial derivatives of the third order
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 4
\pages 15--26
\mathnet{http://mi.mathnet.ru/ivm9451}
\crossref{https://doi.org/10.26907/0021-3446-2019-4-15-26}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 4
\pages 12--22
\crossref{https://doi.org/10.3103/S1066369X19040029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472936400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067882450}
Linking options:
  • https://www.mathnet.ru/eng/ivm9451
  • https://www.mathnet.ru/eng/ivm/y2019/i4/p15
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :126
    References:41
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024