Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 3, Pages 90–96
DOI: https://doi.org/10.26907/0021-3446-2019-3-90-95
(Mi ivm9449)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

Ideal $F$-norms on $C^*$-algebras. II

A. M. Bikchentaev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (184 kB) Citations (3)
References:
Abstract: We study ideal $F$-norms $\|\cdot\|_p$, $0 < p <+\infty$ associated with a trace $\varphi$ on a $C^*$-algebra $\mathcal{A}$. If $A, B$ of $\mathcal{A}$ are such that $|A|\leq |B|$, then $\|A\|_p \leq \|B\|_p$. We have $\|A\|_p=\|A^*\|_p$ for all $A$ from $\mathcal{A}$ ($0 < p <+\infty$) and $\|\cdot\|_p$ is a seminorm for $1 \leq p <+\infty$. We estimate the distance from any element of unital $\mathcal{A}$ to the scalar subalgebra in the seminorm $\|\cdot\|_1$. We investigate geometric properties of semiorthogonal projections from $\mathcal{A}$. If a trace $\varphi$ is finite, then the set of all finite sums of pairwise products of projections and semiorthogonal projections (in any order) of $\mathcal{A}$ with coefficients from $\mathbb{R}^+ $ is not dense in $\mathcal{A}$.
Keywords: Hilbert space, linear operator, projection, semiorthogonal projection, unitary operator, inequality, $C^*$-algebra, trace, ideal $F$-norm.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.9773.2017/8.9
Received: 10.09.2018
Revised: 17.09.2018
Accepted: 26.09.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 3, Pages 78–82
DOI: https://doi.org/10.3103/S1066369X19030071
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. M. Bikchentaev, “Ideal $F$-norms on $C^*$-algebras. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3, 90–96; Russian Math. (Iz. VUZ), 63:3 (2019), 78–82
Citation in format AMSBIB
\Bibitem{Bik19}
\by A.~M.~Bikchentaev
\paper Ideal $F$-norms on $C^*$-algebras. II
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 3
\pages 90--96
\mathnet{http://mi.mathnet.ru/ivm9449}
\crossref{https://doi.org/10.26907/0021-3446-2019-3-90-95}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 3
\pages 78--82
\crossref{https://doi.org/10.3103/S1066369X19030071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472936300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066232993}
Linking options:
  • https://www.mathnet.ru/eng/ivm9449
  • https://www.mathnet.ru/eng/ivm/y2019/i3/p90
    Cycle of papers
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024