Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 2, Pages 29–38
DOI: https://doi.org/10.26907/0021-3446-2019-2-29-38
(Mi ivm9437)
 

This article is cited in 2 scientific papers (total in 2 papers)

The main theorem for (anti)self-dual conformal torsion-free connection

L. N. Krivonosov, V. A. Lukyanov

Nizhny Novgorod State Technical University, 24 Minin str., Nizhny Novgorod, 603950, Russia
Full-text PDF (197 kB) Citations (2)
References:
Abstract: In this paper we obtain results that occur on a four-manifold of conformal torsion-free connection with all possible signatures of angular metric. It is proved that three of the four terms of the formula for the decomposition of the basic tensor are equidual, one is skew-dual. Based on this result we find conditions for (anti)self-duality of external 2-forms, which are part of components of the conformal curvature matrix. With the help of the last result, the main theorem is proved: a conformal torsion-free connection on a four-manifold with the signatures of the angular metric $s=\pm 4;0$ is (anti)self-dual if and only if the Weyl tensor of the angular metric and the exterior 2-form $\Phi _{0}^{0}$ are (anti)self-dual and Einstein and Maxwell's equations are satisfied. In particular, the normal conformal Cartan connection is (anti)self-dual iff the Weyl tensor of the angular metric is the same.
Keywords: conformal connection, (anti)self-duality, Weyl tensor, conformal curvature, Einstein equations, Maxwell's equations.
Received: 13.01.2018
Revised: 13.01.2018
Accepted: 20.06.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 2, Pages 25–34
DOI: https://doi.org/10.3103/S1066369X1902004X
Bibliographic databases:
Document Type: Article
UDC: 514.756
Language: Russian
Citation: L. N. Krivonosov, V. A. Lukyanov, “The main theorem for (anti)self-dual conformal torsion-free connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 2, 29–38; Russian Math. (Iz. VUZ), 63:2 (2019), 25–34
Citation in format AMSBIB
\Bibitem{KriLuk19}
\by L.~N.~Krivonosov, V.~A.~Lukyanov
\paper The main theorem for (anti)self-dual conformal torsion-free connection
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 2
\pages 29--38
\mathnet{http://mi.mathnet.ru/ivm9437}
\crossref{https://doi.org/10.26907/0021-3446-2019-2-29-38}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 2
\pages 25--34
\crossref{https://doi.org/10.3103/S1066369X1902004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471610400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067274800}
Linking options:
  • https://www.mathnet.ru/eng/ivm9437
  • https://www.mathnet.ru/eng/ivm/y2019/i2/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :127
    References:31
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024