Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 12, Pages 94–101 (Mi ivm9423)  

Nonautonomous bounded remainder sets

A. V. Shutov

Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkin str., Moscow, 119991 Russia
References:
Abstract: Nonautonomous bounded remainder sets are sequences of sets admitting a uniform estimate of the remainder term in the distribution of the fractional parts of linear function problem. In the paper we give a complete description of nonautonomous bounded remainder sets in the case of periodic sequences. The result is also generalized to certain classes of quasiperiodic sequences of sets. The proofs are based on obtaining explicit formulas for the remainder term in the terms of sums of fractional parts. The method is effective, i. e., it allows us to obtain explicit estimates of the remainder term.
Keywords: uniform distribution, bounded remainder set, sums of fractional parts.
Funding agency Grant number
Russian Science Foundation 14-11-00433
Supported by the Russian Scientific Foundation, grant No. 14-11-00433.
Received: 02.11.2017
English version:
Russian Mathematics, 2018, Volume 62, Issue 12, Pages 81–87
DOI: https://doi.org/10.3103/S1066369X18120071
Bibliographic databases:
Document Type: Article
UDC: 511.431
Language: Russian
Citation: A. V. Shutov, “Nonautonomous bounded remainder sets”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 12, 94–101; Russian Mathematics, 62:12 (2018), 81–87
Citation in format AMSBIB
\Bibitem{Shu18}
\by A.~V.~Shutov
\paper Nonautonomous bounded remainder sets
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 12
\pages 94--101
\mathnet{http://mi.mathnet.ru/ivm9423}
\transl
\jour Russian Mathematics
\yr 2018
\vol 62
\issue 12
\pages 81--87
\crossref{https://doi.org/10.3103/S1066369X18120071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453361600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058462102}
Linking options:
  • https://www.mathnet.ru/eng/ivm9423
  • https://www.mathnet.ru/eng/ivm/y2018/i12/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024