|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 12, Pages 50–59
(Mi ivm9419)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Modular sesquilinear forms and generalized Stinspring representation
A. V. Kalinichenkoa, I. N. Malievb, M. A. Plievc a North-Caucasian Institute of Mining and Metallurgy named after K.L. Khetagurov,
(State Technological University),
44 Nikolaeva str., Vladikavkaz, 362021 Russia
b North-Ossetian State University,
44–46 Vatutina str., Vladikavkaz, 362025 Russia
c Southern Mathematical Institute,
the Vladikavkaz Scientific Center of the Russian Academy of Sciences,
22 Markusa str., Vladikavkaz, 362027 Russia
Abstract:
We consider completely positive maps defined on locally $C^{\ast}$-algebra and taking values in the space of sesquilinear forms on Hilbert $C^{\ast}$-module $\mathcal{M}$. We construct the Stinspring type representation for this type of maps and show that any two minimal Stinspring representations are unitarily equivalent.
Keywords:
Hilbert $C^\ast$-module, locally $C^{\ast}$-algebra, sesquilinear form, completely positive map, $\ast$-homomorphism, positive definite kernel, Stinspring's representation.
Received: 08.11.2017
Citation:
A. V. Kalinichenko, I. N. Maliev, M. A. Pliev, “Modular sesquilinear forms and generalized Stinspring representation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 12, 50–59; Russian Math. (Iz. VUZ), 62:12 (2018), 42–49
Linking options:
https://www.mathnet.ru/eng/ivm9419 https://www.mathnet.ru/eng/ivm/y2018/i12/p50
|
Statistics & downloads: |
Abstract page: | 180 | Full-text PDF : | 43 | References: | 26 | First page: | 3 |
|