Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 12, Pages 50–59 (Mi ivm9419)  

This article is cited in 1 scientific paper (total in 1 paper)

Modular sesquilinear forms and generalized Stinspring representation

A. V. Kalinichenkoa, I. N. Malievb, M. A. Plievc

a North-Caucasian Institute of Mining and Metallurgy named after K.L. Khetagurov, (State Technological University), 44 Nikolaeva str., Vladikavkaz, 362021 Russia
b North-Ossetian State University, 44–46 Vatutina str., Vladikavkaz, 362025 Russia
c Southern Mathematical Institute, the Vladikavkaz Scientific Center of the Russian Academy of Sciences, 22 Markusa str., Vladikavkaz, 362027 Russia
Full-text PDF (220 kB) Citations (1)
References:
Abstract: We consider completely positive maps defined on locally $C^{\ast}$-algebra and taking values in the space of sesquilinear forms on Hilbert $C^{\ast}$-module $\mathcal{M}$. We construct the Stinspring type representation for this type of maps and show that any two minimal Stinspring representations are unitarily equivalent.
Keywords: Hilbert $C^\ast$-module, locally $C^{\ast}$-algebra, sesquilinear form, completely positive map, $\ast$-homomorphism, positive definite kernel, Stinspring's representation.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-12064_ННИО_а
Received: 08.11.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 12, Pages 42–49
DOI: https://doi.org/10.3103/S1066369X18120034
Bibliographic databases:
Document Type: Article
UDC: 517.983:517.986
Language: Russian
Citation: A. V. Kalinichenko, I. N. Maliev, M. A. Pliev, “Modular sesquilinear forms and generalized Stinspring representation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 12, 50–59; Russian Math. (Iz. VUZ), 62:12 (2018), 42–49
Citation in format AMSBIB
\Bibitem{KalMalPli18}
\by A.~V.~Kalinichenko, I.~N.~Maliev, M.~A.~Pliev
\paper Modular sesquilinear forms and generalized Stinspring representation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 12
\pages 50--59
\mathnet{http://mi.mathnet.ru/ivm9419}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 12
\pages 42--49
\crossref{https://doi.org/10.3103/S1066369X18120034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453361600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058480443}
Linking options:
  • https://www.mathnet.ru/eng/ivm9419
  • https://www.mathnet.ru/eng/ivm/y2018/i12/p50
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :43
    References:26
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024