Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 9, Pages 11–20 (Mi ivm9393)  

This article is cited in 1 scientific paper (total in 1 paper)

Derivation of an equation of phenomenological symmetry for some three-dimensional geometries

R. A. Bogdanova, G. G. Mikhailichenko

Gorno-Altai State University, 1 Lenkina str., Gorno-Altaisk, 649000 Russia
Full-text PDF (186 kB) Citations (1)
References:
Abstract: The main problems of the theory of phenomenologically symmetric (PS) geometries, i.e., geometries of maximum mobility, are their complete classification, the establishing of the fact of existence of their group symmetry, and finding of an equation of the phenomenological symmetry for each of them. A complete classification of three-dimensional PS geometries has been already built. Their PS, i.e., the existence of a functional relation between the values of the metric function for all pairs of five points follows from the rank of the corresponding functional matrix. However, not for all such geometries an equation which expresses the PS is known in the explicit form. The paper describes methods of finding the equations of PS which were applied to some three-dimensional geometries. For each of them we give groups of motions that define the group symmetry of degree six.
Keywords: three-dimensional geometry, phenomenological symmetry (PS), group symmetry, symmetry equivalence, equation of the PS.
Received: 17.07.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 9, Pages 7–16
DOI: https://doi.org/10.3103/S1066369X18090025
Bibliographic databases:
Document Type: Article
UDC: 514.1
Language: Russian
Citation: R. A. Bogdanova, G. G. Mikhailichenko, “Derivation of an equation of phenomenological symmetry for some three-dimensional geometries”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 9, 11–20; Russian Math. (Iz. VUZ), 62:9 (2018), 7–16
Citation in format AMSBIB
\Bibitem{BogMik18}
\by R.~A.~Bogdanova, G.~G.~Mikhailichenko
\paper Derivation of an equation of phenomenological symmetry for some three-dimensional geometries
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 9
\pages 11--20
\mathnet{http://mi.mathnet.ru/ivm9393}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 9
\pages 7--16
\crossref{https://doi.org/10.3103/S1066369X18090025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443877800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052822580}
Linking options:
  • https://www.mathnet.ru/eng/ivm9393
  • https://www.mathnet.ru/eng/ivm/y2018/i9/p11
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :48
    References:44
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024