Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 8, Pages 33–45 (Mi ivm9385)  

This article is cited in 1 scientific paper (total in 1 paper)

Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation

E. V. Kotova, V. A. Kudinov, E. V. Stefanyuk, T. B. Tarabrina

Samara State Polytechnic University, 244 Molodogvardeiskaya str., Samara, 443100 Russia
Full-text PDF (281 kB) Citations (1)
References:
Abstract: Using additional sought-for functions and additional boundary conditions in integral method of heat balance, we obtain high-accuracy approximate analytic solutions to non-stationary heat conductivity problem for infinite solid cylinder that allow to estimate a temperature state practically in all time range of non-stationary process. The heat conducting process is divided into two stages with respect to time. The initial problem for equation in partial derivatives is represented in the form of two problems, in which the integration is performed over ordinary differential equations with respect to respective additional sought-for functions. This method allows to simplify substantially the process of solving the initial problem by reducing it to sequentially solving two problems, in which of them they use additional boundary conditions.
Keywords: non-stationary thermal conductivity, infinite solid cylinder, integral method of heat balance, additional boundary conditions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.5551.2017/8.9
Received: 28.03.2017
Revised: 13.12.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 8, Pages 27–37
DOI: https://doi.org/10.3103/S1066369X18080054
Bibliographic databases:
Document Type: Article
UDC: 536.2:517.958
Language: Russian
Citation: E. V. Kotova, V. A. Kudinov, E. V. Stefanyuk, T. B. Tarabrina, “Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8, 33–45; Russian Math. (Iz. VUZ), 62:8 (2018), 27–37
Citation in format AMSBIB
\Bibitem{KotKudSte18}
\by E.~V.~Kotova, V.~A.~Kudinov, E.~V.~Stefanyuk, T.~B.~Tarabrina
\paper Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 8
\pages 33--45
\mathnet{http://mi.mathnet.ru/ivm9385}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 8
\pages 27--37
\crossref{https://doi.org/10.3103/S1066369X18080054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439976800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050480862}
Linking options:
  • https://www.mathnet.ru/eng/ivm9385
  • https://www.mathnet.ru/eng/ivm/y2018/i8/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :66
    References:30
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024