Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 8, Pages 3–11 (Mi ivm9381)  

This article is cited in 5 scientific papers (total in 5 papers)

On symmetric spaces with convergence in measure on reflexive subspaces

S. V. Astashkin, S. I. Strakhov

Samara national research university, 34 Moskovskoe highway, Samara, 443086 Russia
Full-text PDF (218 kB) Citations (5)
References:
Abstract: A closed subspace $H$ of a symmetric space $X$ on $[0,1]$ is said to be strongly embedded in $X$ if in $H$ a convergence in $X$-norm is equivalent to the convergence in Lebesgue measure. We study symmetric spaces $X$ with the property that all their reflexive subspaces are strongly embedded in $X$. We prove that it is the case for all spaces, which satisfy an analog of the classical Dunford–Pettis theorem of relatively weakly compact subsets in $L_1$. At the same time the converse assertion fails for a wide class of separable Marcinkiewicz spaces.
Keywords: symmetric spaces, reflexive subspace, Marcinkiewicz space, equicontinuity of norms.
Received: 23.06.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 8, Pages 1–8
DOI: https://doi.org/10.3103/S1066369X18080017
Bibliographic databases:
Document Type: Article
UDC: 517.982
Language: Russian
Citation: S. V. Astashkin, S. I. Strakhov, “On symmetric spaces with convergence in measure on reflexive subspaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8, 3–11; Russian Math. (Iz. VUZ), 62:8 (2018), 1–8
Citation in format AMSBIB
\Bibitem{AstStr18}
\by S.~V.~Astashkin, S.~I.~Strakhov
\paper On symmetric spaces with convergence in measure on reflexive subspaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 8
\pages 3--11
\mathnet{http://mi.mathnet.ru/ivm9381}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 8
\pages 1--8
\crossref{https://doi.org/10.3103/S1066369X18080017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439976800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050595844}
Linking options:
  • https://www.mathnet.ru/eng/ivm9381
  • https://www.mathnet.ru/eng/ivm/y2018/i8/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :87
    References:43
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024