Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 7, Pages 54–60 (Mi ivm9375)  

Isomorphisms of semigroups of endomorphisms of mixed Abelian groups

D. S. Chistyakov

National Research University Higher School of Economics, 20 Myasnitskaya str., Moscow, 101000 Russia
References:
Abstract: We study Abelian groups such that their endomorphism ring is a unique addition ring. It means that there exists a unique binary operation of addition which turns endomorphism semigroup into a ring. We solve also close questions.
Keywords: mixed Abelian group, endomorphism semigroup, $\mathrm{UA}$-ring.
Received: 26.01.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 7, Pages 47–52
DOI: https://doi.org/10.3103/S1066369X18070046
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: D. S. Chistyakov, “Isomorphisms of semigroups of endomorphisms of mixed Abelian groups”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 7, 54–60; Russian Math. (Iz. VUZ), 62:7 (2018), 47–52
Citation in format AMSBIB
\Bibitem{Chi18}
\by D.~S.~Chistyakov
\paper Isomorphisms of semigroups of endomorphisms of mixed Abelian groups
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 7
\pages 54--60
\mathnet{http://mi.mathnet.ru/ivm9375}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 7
\pages 47--52
\crossref{https://doi.org/10.3103/S1066369X18070046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436830400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049137874}
Linking options:
  • https://www.mathnet.ru/eng/ivm9375
  • https://www.mathnet.ru/eng/ivm/y2018/i7/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025