Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 5, Pages 33–40 (Mi ivm9356)  

This article is cited in 3 scientific papers (total in 3 papers)

Facially symmetric spaces and predual ones of Hermitian part of von Neumann algebras

M. M. Ibragimova, K. K. Kudaibergenova, Zh. Kh. Seipullaevb

a Karakalpak State University named after Berdakh, 1 Ac. C. Abdirov str., Nukus, 230113 Republic of Uzbekistan
b National University of Uzbekistan, 29 Durmon Yuli str., Tashkent, 100125 Republic of Uzbekistan
Full-text PDF (196 kB) Citations (3)
References:
Abstract: We prove that predual of real part of von Newmann algebra is strongly facially symmetric space if and only if is it a direct sum of Abelian algebra and algebra of $I_2$ type. At that, neutral strongly facially symmetric space is predual to Abelian algebra, only.
Keywords: face, projector, von Neumann algebra, side-symmetric space.
Received: 20.02.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 5, Pages 27–33
DOI: https://doi.org/10.3103/S1066369X18050055
Bibliographic databases:
Document Type: Article
UDC: 598.17
Language: Russian
Citation: M. M. Ibragimov, K. K. Kudaibergenov, Zh. Kh. Seipullaev, “Facially symmetric spaces and predual ones of Hermitian part of von Neumann algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 5, 33–40; Russian Math. (Iz. VUZ), 62:5 (2018), 27–33
Citation in format AMSBIB
\Bibitem{IbrKudSey18}
\by M.~M.~Ibragimov, K.~K.~Kudaibergenov, Zh.~Kh.~Seipullaev
\paper Facially symmetric spaces and predual ones of Hermitian part of von Neumann algebras
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 5
\pages 33--40
\mathnet{http://mi.mathnet.ru/ivm9356}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 5
\pages 27--33
\crossref{https://doi.org/10.3103/S1066369X18050055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430992800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048928586}
Linking options:
  • https://www.mathnet.ru/eng/ivm9356
  • https://www.mathnet.ru/eng/ivm/y2018/i5/p33
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :45
    References:33
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024