Abstract:
We consider subsystems of system of Haar type and system of functions more general than the systems of contractions and displacements of one function. We obtain conditions under which these function systems are representation systems in spaces Eφ with certain restrictions on φ.
Keywords:
generalized Orlicz spaces and classes, represantation systems, the system of contractions and displacements of one function in spaces Eφ.
Citation:
V. I. Filippov, “On generalization of Haar system and other function systems in spaces Eφ”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 87–92; Russian Math. (Iz. VUZ), 62:1 (2018), 76–81
\Bibitem{Fil18}
\by V.~I.~Filippov
\paper On generalization of Haar system and other function systems in spaces $E_{\varphi}$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 1
\pages 87--92
\mathnet{http://mi.mathnet.ru/ivm9323}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 1
\pages 76--81
\crossref{https://doi.org/10.3103/S1066369X18010115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427098400011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043319718}
Linking options:
https://www.mathnet.ru/eng/ivm9323
https://www.mathnet.ru/eng/ivm/y2018/i1/p87
This publication is cited in the following 4 articles:
V. I. Filippov, “Tselochislennoe razlozhenie elementov prostranstv nesummiruemykh funktsii v ryady tipa Fure po sistemam iz szhatii i sdvigov odnoi funktsii”, Tr. IMM UrO RAN, 30, no. 4, 2024, 286–300
V. I. Filippov, “Integer expansion in systems of translates and dilates of a single function”, Izv. Math., 84:4 (2020), 796–806
V. I. Filippov, “Series with integer coefficients by systems of contractions and shifts of one function”, Lobachevskii J. Math., 41:11, SI (2020), 2143–2148
V. I. Filippov, “Series of Fourier type with integer coefficients by systems of dilates and translates of one function in Lp, p≥1”, Russian Math. (Iz. VUZ), 63:6 (2019), 51–57