Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 12, Pages 35–45 (Mi ivm9307)  

This article is cited in 3 scientific papers (total in 3 papers)

A finite difference method for the numerical solving general third-order boundary-value problem with an internal boundary condition

P. K. Pandey

Dyal Singh College (University of Delhi), Lodhi Road, New-Delhi, 110003, India
Full-text PDF (327 kB) Citations (3)
References:
Abstract: In this paper we have proposed a finite difference method for the numerical solving general third-order boundary-value problem. Under appropriate conditions we have discussed the convergence of the proposed method. The computational results in experiment on test problems verify the efficiency and theoretically established second order accuracy of the proposed method.
Keywords: boundary-value problem, difference method, nonlinear, second order sonvergence, three-point BVP.
Received: 07.07.2016
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 12, Pages 29–38
DOI: https://doi.org/10.3103/S1066369X17120040
Bibliographic databases:
Document Type: Article
UDC: 519.624
Language: Russian
Citation: P. K. Pandey, “A finite difference method for the numerical solving general third-order boundary-value problem with an internal boundary condition”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12, 35–45; Russian Math. (Iz. VUZ), 61:12 (2017), 29–38
Citation in format AMSBIB
\Bibitem{Pan17}
\by P.~K.~Pandey
\paper A finite difference method for the numerical solving general third-order boundary-value problem with an internal boundary condition
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 12
\pages 35--45
\mathnet{http://mi.mathnet.ru/ivm9307}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 12
\pages 29--38
\crossref{https://doi.org/10.3103/S1066369X17120040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416288100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037039746}
Linking options:
  • https://www.mathnet.ru/eng/ivm9307
  • https://www.mathnet.ru/eng/ivm/y2017/i12/p35
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :58
    References:39
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024