|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 10, Pages 89–93
(Mi ivm9294)
|
|
|
|
Brief communications
Cocyclic $n$-groups
N. A. Shchuchkin Volgograd State Socio-Pedagogical University,
27 Lenin Ave., Volgograg, 400131 Russia
Abstract:
We describe all cocyclic $n$-groups and the structure of $(n, 2)$-rings of endomorphisms of cocyclic $n$-groups. We prove that a cocyclic $n$-group is defined uniquely by its $(n, 2)$-ring of endomorphisms.
Keywords:
abelian $n$-group, cocyclic $n$-group, $(n,2)$-ring of endomorphisms.
Received: 06.05.2015 Revised: 25.02.2017
Citation:
N. A. Shchuchkin, “Cocyclic $n$-groups”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10, 89–93; Russian Math. (Iz. VUZ), 61:10 (2017), 77–81
Linking options:
https://www.mathnet.ru/eng/ivm9294 https://www.mathnet.ru/eng/ivm/y2017/i10/p89
|
|