|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 10, Pages 8–14
(Mi ivm9285)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Partition of a unity on infinite-dimensional manifold of the Lipschitz class $\mathrm{Lip}^k$
Z. D. Al-Nafie Kazan Federal University,
18 Kremlyovskaya str., Kazan, 420008 Russia
Abstract:
We prove a critrion of $\mathrm{Lip}^k$-paracompactness of infinite-dimensional manifold $M$ modeled in nonnormable topological Fréchet vector space $F$. We establish that for $\mathrm{Lip}^k$-paracompactness it is necessary and sufficcient for the space of models $F$ to be paracompact and $\mathrm{Lip}^k$-normal. We prove suffcient condition of existence of $\mathrm{Lip}^k$-partition of unity on a manifold of class $\mathrm{Lip}^k$.
Keywords:
infinite-dimensional manifold, paracompactness, partition of unity, convenient topological vector spaces, nonnormable Fréchet spaces.
Received: 23.06.2016 Revised: 05.12.2016
Citation:
Z. D. Al-Nafie, “Partition of a unity on infinite-dimensional manifold of the Lipschitz class $\mathrm{Lip}^k$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10, 8–14; Russian Math. (Iz. VUZ), 61:10 (2017), 5–10
Linking options:
https://www.mathnet.ru/eng/ivm9285 https://www.mathnet.ru/eng/ivm/y2017/i10/p8
|
|