Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 8, Pages 80–85 (Mi ivm9271)  

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces

J. R. Agachev, M. Yu. Pershagin

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (167 kB) Citations (2)
References:
Abstract: In this paper we investigate the general boundary-value problem for linear integro-differential equations, specified on a segment of the number line where the order of the internal differential operators is of higher order than that of the corresponding exterior differential operator. We prove well-posedness of this problem in the Hadamard sense in new pair of non-weighted Sobolev spaces.
Keywords: Sobolev space, integro-differential equation, general boundary-value problem, well-posedness.
Received: 17.03.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 8, Pages 71–75
DOI: https://doi.org/10.3103/S1066369X17080084
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: J. R. Agachev, M. Yu. Pershagin, “Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 8, 80–85; Russian Math. (Iz. VUZ), 61:8 (2017), 71–75
Citation in format AMSBIB
\Bibitem{AgaPer17}
\by J.~R.~Agachev, M.~Yu.~Pershagin
\paper Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 8
\pages 80--85
\mathnet{http://mi.mathnet.ru/ivm9271}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 8
\pages 71--75
\crossref{https://doi.org/10.3103/S1066369X17080084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408855400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85024911302}
Linking options:
  • https://www.mathnet.ru/eng/ivm9271
  • https://www.mathnet.ru/eng/ivm/y2017/i8/p80
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024