Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 8, Pages 67–79 (Mi ivm9270)  

This article is cited in 14 scientific papers (total in 14 papers)

Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh

I. I. Sharapudinovab, T. I. Sharapudinovcb

a Daghestan State Pedagogical University
b Dagestan Scientific Center of the Russian Academy of Sciences, 17 Gamidov str., Makhachkala, 367013 Russia
c Vladikavkaz Scientific Center of the Russian Academy of Sciences, 45 Gadzhiev str., Makhachkala, 367023 Russia
References:
Abstract: We consider the problem of constructing polynomials, orthogonal in Sobolev sense on the finite uniform mesh and associated with classical Chebyshev polynomials of discrete variable. We have found an explicit expression of these polynomials by classical Chebyshev polynomials. Also we have obtained an expansion of new polynomials by generalized powers of Newton type. We obtain expressions for the deviation of a discrete function and its finite differences from respectively partial sums of its Fourier series on the new system of polynomials and their finite differences.
Keywords: polynomials orthogonal in Sobolev sence, Chebyshev polynomials orthogonal on the mesh, approximation of discrete functions, mixed series of Chebyshev polynomials orthogonal on a uniform mesh.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00486_а
Received: 18.04.2016
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 8, Pages 59–70
DOI: https://doi.org/10.3103/S1066369X17080072
Bibliographic databases:
Document Type: Article
UDC: 517.521
Language: Russian
Citation: I. I. Sharapudinov, T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 8, 67–79; Russian Math. (Iz. VUZ), 61:8 (2017), 59–70
Citation in format AMSBIB
\Bibitem{ShaSha17}
\by I.~I.~Sharapudinov, T.~I.~Sharapudinov
\paper Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 8
\pages 67--79
\mathnet{http://mi.mathnet.ru/ivm9270}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 8
\pages 59--70
\crossref{https://doi.org/10.3103/S1066369X17080072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408855400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85024845552}
Linking options:
  • https://www.mathnet.ru/eng/ivm9270
  • https://www.mathnet.ru/eng/ivm/y2017/i8/p67
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024