Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 7, Pages 74–83 (Mi ivm9261)  

Univalent conformal mappings by generalized Christoffel–Schwartz integral onto polygonal domains with countable set of vertices

E. N. Khasanova

Kazan State University of Architecture and Civil Engineering, 1 Zelyonaya str., Kazan, 420043 Russia
References:
Abstract: We obtain a formula for the conformal mapping of the upper half-plane onto a polygonal domain. This structural formula generalizes the Schwartz–Christoffel equation and is written with the use of partial solution to the Hilbert boundary-value problem with a countable set of points of discontinuity of the coefficients and with turbulence at infinity of logarithmic type. We also prove closedness and existence of univalent mappings among given ones.
Keywords: Schwartz–Christoffel equation, conformal mapping, Hilbert boundary-value problem, univalence.
Received: 28.01.2016
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 7, Pages 64–72
DOI: https://doi.org/10.3103/S1066369X1707009X
Bibliographic databases:
Document Type: Article
UDC: 517.546
Language: Russian
Citation: E. N. Khasanova, “Univalent conformal mappings by generalized Christoffel–Schwartz integral onto polygonal domains with countable set of vertices”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7, 74–83; Russian Math. (Iz. VUZ), 61:7 (2017), 64–72
Citation in format AMSBIB
\Bibitem{Kha17}
\by E.~N.~Khasanova
\paper Univalent conformal mappings by generalized Christoffel--Schwartz integral onto polygonal domains with countable set of vertices
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 7
\pages 74--83
\mathnet{http://mi.mathnet.ru/ivm9261}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 7
\pages 64--72
\crossref{https://doi.org/10.3103/S1066369X1707009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408852900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019544260}
Linking options:
  • https://www.mathnet.ru/eng/ivm9261
  • https://www.mathnet.ru/eng/ivm/y2017/i7/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :42
    References:32
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024