Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 5, Pages 3–10 (Mi ivm9232)  

This article is cited in 3 scientific papers (total in 3 papers)

Residually finite $p$-groups of generalized free products of groups

D. N. Azarov

Ivanovo State University, 37 Ermaka str., Ivanovo, 153025 Russia
Full-text PDF (182 kB) Citations (3)
References:
Abstract: Let $p$ be a prime number. Recall that a group $G$ is said to be a residually finite $p$-group if for every nonidentity element $a$ of $G$ there exists a homomorphism of the group $G$ onto some finite $p$-group such that the image of the element $a$ differs from unity. For the free product of two residually finite $p$-groups with amalgamated finite subgroups we obtain a necessary and sufficient condition to be a residually finite $p$-group. This result is a generalization of the similar Higman theorem proved for a free product of two finite $p$-groups with amalgamation.
Keywords: free product of groups with amalgamated subgroups, residually finite $p$-group.
Received: 16.10.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 5, Pages 1–6
DOI: https://doi.org/10.3103/S1066369X17050012
Bibliographic databases:
Document Type: Article
UDC: 512.543
Language: Russian
Citation: D. N. Azarov, “Residually finite $p$-groups of generalized free products of groups”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5, 3–10; Russian Math. (Iz. VUZ), 61:5 (2017), 1–6
Citation in format AMSBIB
\Bibitem{Aza17}
\by D.~N.~Azarov
\paper Residually finite $p$-groups of generalized free products of groups
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 5
\pages 3--10
\mathnet{http://mi.mathnet.ru/ivm9232}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 5
\pages 1--6
\crossref{https://doi.org/10.3103/S1066369X17050012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408843700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018393520}
Linking options:
  • https://www.mathnet.ru/eng/ivm9232
  • https://www.mathnet.ru/eng/ivm/y2017/i5/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :24
    References:25
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024