Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 4, Pages 76–83 (Mi ivm9230)  

About a regularized method for solving a constrained pseudoinverse problem

R. A. Shafieva, E. A. Bondar'b, I. Yu. Yastrebovac

a Nizhni Novgorod State Pedagogical University, 1 Ul'yanov str., Nizhni Novgorod, 603950 Russia
b Nizhni Novgorod State Architectural and Civil Engineering University, 65 Il'inskaya str., Nizhni Novgorod, 603950 Russia
c Nizhni Novgorod State University, 23 Gagarin Ave., Nizhni Novgorod, 603950 Russia
References:
Abstract: For a constrained pseudoinverse problem with operators satisfying complementarity condition we suggest a one-parametric continuous method of regularization of second order. This method is based on stabilization of solutions to Cauchy problems for linear differential equation of second order in Hilbert space constructed on the base of the method of a heavy globule. We establish conditions on the parametric function of regularization and levels of disturbances ensuring the stability of the method in the class of all constrained disturbances.
Keywords: constrained pseudoinverse problem, continuous method of regularization of second order, complementarity condition of operators.
Received: 09.11.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 4, Pages 65–71
DOI: https://doi.org/10.3103/S1066369X17040090
Bibliographic databases:
Document Type: Article
UDC: 517.983
Language: Russian
Citation: R. A. Shafiev, E. A. Bondar', I. Yu. Yastrebova, “About a regularized method for solving a constrained pseudoinverse problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4, 76–83; Russian Math. (Iz. VUZ), 61:4 (2017), 65–71
Citation in format AMSBIB
\Bibitem{ShaBonYas17}
\by R.~A.~Shafiev, E.~A.~Bondar', I.~Yu.~Yastrebova
\paper About a regularized method for solving a constrained pseudoinverse problem
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 4
\pages 76--83
\mathnet{http://mi.mathnet.ru/ivm9230}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 4
\pages 65--71
\crossref{https://doi.org/10.3103/S1066369X17040090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408841300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016713102}
Linking options:
  • https://www.mathnet.ru/eng/ivm9230
  • https://www.mathnet.ru/eng/ivm/y2017/i4/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024