Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 3, Pages 24–36 (Mi ivm9214)  

Differential-geometric structure associated with Lagrangian and its dynamic interpretation

A. K. Rybnikov

Moscow State University, 1 Leninskie gory, GSP-1, Moscow, 119991 Russia
References:
Abstract: The paper is devoted to investigation of differential-geometric structure associated with Lagrangian $L$ depending of $n$ functions of one variable $t$ and their derivatives by means of Cartan–Laptev method. We construct a fundamental object of a structure associated with Lagrangian. We also construct a covector $E_i$ $(i=1,\dotsc,n)$ embraced by prolonged fundamental object so that the system of equalities $E_i=0$ is an invariant representation of the Euler equations for the variational functional. Due to this, there is no necessity to connect Euler equations with the variational problem. Moreover, we distinguish by invariant means the class of special Lagrangians generating connection in the bundle of centroaffine structure over the base $M$. In case when Lagrangian $L$ is special, there exist a relative invariant $\Pi$ defined on $M$ which generates covector field on $M$ and fibered metric in the bundle of centroaffine structure over the base $M$.
Keywords: differential-geometric structure, fundamental object, lagrangian, fiber bundle, connection in principal fibre bundle.
Received: 25.08.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 3, Pages 20–30
DOI: https://doi.org/10.3103/S1066369X17030033
Bibliographic databases:
Document Type: Article
UDC: 514.76:531.01
Language: Russian
Citation: A. K. Rybnikov, “Differential-geometric structure associated with Lagrangian and its dynamic interpretation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3, 24–36; Russian Math. (Iz. VUZ), 61:3 (2017), 20–30
Citation in format AMSBIB
\Bibitem{Ryb17}
\by A.~K.~Rybnikov
\paper Differential-geometric structure associated with Lagrangian and its dynamic interpretation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 3
\pages 24--36
\mathnet{http://mi.mathnet.ru/ivm9214}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 3
\pages 20--30
\crossref{https://doi.org/10.3103/S1066369X17030033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408837700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014800213}
Linking options:
  • https://www.mathnet.ru/eng/ivm9214
  • https://www.mathnet.ru/eng/ivm/y2017/i3/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024