|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 3, Pages 3–14
(Mi ivm9212)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Method of integral transformations in inverse problems of anomalous diffusion
A. N. Bondarenkoa, T. V. Buguevaab, D. S. Ivashchenkoc a Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 4 Ak. Koptyuga Ave., Novosibirsk, 630090 Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090 Russia
c RN-UfaNIPIneft, LLC, 3 Bekhtereva str., Ufa, 450103 Russia
Abstract:
We consider an initial boundary-value problem for a multidimentional fractional diffusion equation. The aim of the paper is the construction of integrated transformation with a kernel of type of Right which is the unique correspondence connecting the fractional equation of diffusion and the hyperbolic equation. This transformation can be used for the proof of uniqueness of the solution of an inverse problem for the fractional equation of diffusion.
Keywords:
fractional equation, anomalous diffusion, initial boundary-value problem, inverse problem.
Received: 09.09.2015
Citation:
A. N. Bondarenko, T. V. Bugueva, D. S. Ivashchenko, “Method of integral transformations in inverse problems of anomalous diffusion”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3, 3–14; Russian Math. (Iz. VUZ), 61:3 (2017), 1–11
Linking options:
https://www.mathnet.ru/eng/ivm9212 https://www.mathnet.ru/eng/ivm/y2017/i3/p3
|
|