Abstract:
We consider an initial boundary-value problem for a multidimentional fractional diffusion equation. The aim of the paper is the construction of integrated transformation with a kernel of type of Right which is the unique correspondence connecting the fractional equation of diffusion and the hyperbolic equation. This transformation can be used for the proof of uniqueness of the solution of an inverse problem for the fractional equation of diffusion.
Citation:
A. N. Bondarenko, T. V. Bugueva, D. S. Ivashchenko, “Method of integral transformations in inverse problems of anomalous diffusion”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3, 3–14; Russian Math. (Iz. VUZ), 61:3 (2017), 1–11
This publication is cited in the following 5 articles:
D. K. Durdiev, A. A. Boltaev, A. A. Rakhmonov, “Zadacha opredeleniya yadra tipa svertki v uravnenii Mura–Gibsona–Tomsona tretego poryadka”, Izv. vuzov. Matem., 2023, no. 12, 3–16
D. K. Durdiev, Zh. Zh. Zhumaev, “Obratnaya zadacha opredeleniya yadra integro-differentsialnogo uravneniya drobnoi diffuzii v ogranichennoi oblasti”, Izv. vuzov. Matem., 2023, no. 10, 22–35
D. K. Durdiev, J. J. Jumaev, “Inverse Problem of Determining the Kernel of Integro-Differential Fractional Diffusion Equation in Bounded Domain”, Russ Math., 67:10 (2023), 1
D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov, “Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation”, Russ Math., 67:12 (2023), 1
Vasily A. Dedok, Tatyana V. Bugueva, 2020 Science and Artificial Intelligence conference (S.A.I.ence), 2020, 9