Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 2, Pages 34–43 (Mi ivm9206)  

Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system

Ya. Yu. Larina, L. I. Rodina

Udmurt State University, 1 Universitetskaya str., Izhevsk, 426034 Russia
References:
Abstract: We continue the investigation of expansion of a concept of invariance for sets which consists in studying of statistically invariant sets with respect to control systems and differential inclusions is continued. We consider the statistical characteristics of continuous functions: upper and lower relative frequency of containing for graph of a function in a given set. We obtain conditions under which statistical characteristics of two various asymptotical equivalent functions coincide, then by the value of one of them it is possible to calculate the value of another one. We adduce the equality for finding of relative frequencies of hitting of functions the given set in the case when the distance from the graph of one of functions to the given set is a periodic function. A consequence of these statements are conditions of statistically weak invariance of a set with respect to controlled system. For some almost periodic functions we obtain the formulas by which we can calculate the mean values and the statistical characteristics. We also consider the following problem. Let the number $ \lambda_0\in [0,1]$ be given. It is necessary to find the value $c(\lambda_0)$ such that the upper solution $z(t)$ of the Cauchy problem does not exceed $c(\lambda_0)$ with the relative frequency being equal $\lambda_0$. Depending on statement of the problem, a value $z (t) $ can be interpreted as the size of population, energy of a particle, concentration of substance, size of manufacture or the price of production.
Keywords: controllable system, dynamical system, almost periodic function, statistical characteristic, statistical weakly invariant set.
Received: 27.07.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 2, Pages 28–35
DOI: https://doi.org/10.3103/S1066369X17020049
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: Ya. Yu. Larina, L. I. Rodina, “Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 2, 34–43; Russian Math. (Iz. VUZ), 61:2 (2017), 28–35
Citation in format AMSBIB
\Bibitem{LarRod17}
\by Ya.~Yu.~Larina, L.~I.~Rodina
\paper Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 2
\pages 34--43
\mathnet{http://mi.mathnet.ru/ivm9206}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 2
\pages 28--35
\crossref{https://doi.org/10.3103/S1066369X17020049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408829300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014952326}
Linking options:
  • https://www.mathnet.ru/eng/ivm9206
  • https://www.mathnet.ru/eng/ivm/y2017/i2/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :57
    References:54
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024