Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 1, Pages 86–91 (Mi ivm9199)  

This article is cited in 6 scientific papers (total in 6 papers)

Brief communications

Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra

A. M. Bikchentaev

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (188 kB) Citations (6)
References:
Abstract: Let $\mathcal{M}$ be a von Neumann algebra of operators on a Hilbert space $\mathcal{H}$, $\tau$ be a faithful normal semifinite trace on $\mathcal{M}$. We define two (closed in the topology of convergence in measure $\tau$) classes $\mathcal{P}_1$ and $\mathcal{P}_2$ of $\tau$-measurable operators and investigate their properties. The class $ \mathcal{P}_1$ is contained in $ \mathcal{P}_2$. If a $\tau$-measurable operator $T$ is hyponormal, then $T$ lies in $ \mathcal{P}_1$; if an operator $T$ lies in $\mathcal{P}_k$, then $UTU^*$ belongs to $ \mathcal{P}_k$ for all isometries $U $ from $\mathcal{M}$ and $k=1,2$; if an operator $T$ from $ \mathcal{P}_1$ has the bounded inverse $T^{-1} $, then $T^{-1}$ lies in $\mathcal{P}_1$. We establish some new inequalities for rearrangements of operators from $ \mathcal{P}_1$. If a $\tau$-measurable operator $T $ is hyponormal and $T^n $ is $\tau$-compact for some natural number $n$, then $T $ is normal and $\tau$-compact. If $\mathcal{M}=\mathcal{B}(\mathcal{H})$ and $\tau=\mathrm{tr}$, then the class $\mathcal{P}_1$ coincides with the set of all paranormal operators on $\mathcal{H}$.
Keywords: Hilbert space, von Neumann algebra, normal trace, $\tau$-measurable operator, rearrangement, topology of convergence in measure, $\tau$-compact operator, integrable operator, hyponormal operator, quasinormal operator, paranormal operator, projection.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02433_р_поволжье_а
Received: 23.05.2016
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 1, Pages 76–80
DOI: https://doi.org/10.3103/S1066369X17010091
Bibliographic databases:
Document Type: Article
UDC: 517.983:517.986
Language: Russian
Citation: A. M. Bikchentaev, “Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1, 86–91; Russian Math. (Iz. VUZ), 61:1 (2017), 76–80
Citation in format AMSBIB
\Bibitem{Bik17}
\by A.~M.~Bikchentaev
\paper Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 1
\pages 86--91
\mathnet{http://mi.mathnet.ru/ivm9199}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 1
\pages 76--80
\crossref{https://doi.org/10.3103/S1066369X17010091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408827200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013984227}
Linking options:
  • https://www.mathnet.ru/eng/ivm9199
  • https://www.mathnet.ru/eng/ivm/y2017/i1/p86
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :218
    References:116
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024