Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 1, Pages 77–85 (Mi ivm9198)  

This article is cited in 47 scientific papers (total in 47 papers)

Brief communications

Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core

I. B. Badrieva, M. V. Makarovba, V. N. Paimushinba

a Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
b Kazan National Research Technical University named after A.N. Tupolev, 10 K. Marks str., Kazan, 420111 Russia
References:
Abstract: For the sandwich plates and shells with transversal-soft core and carrier layers having on the outer contour of the reinforcing rod, for small deformations, and middle displacements refined geometrically nonlinear theory is built, allowing to describe the process of the subcritical deformation and identify all possible buckling of carrier layers and reinforcing rods. It is based on the introduction as unknown contact forces at the points of interaction mating surface of the outer layers with filler and carrier layers and a core with reinforcing rods at all points of the surface of their conjugation to the shell contour. To derive the basic equations of equilibrium, static boundary conditions for the shell and reinforcing rods, as well as conditions of the kinematic coupling of the carrier layers with a core, the carrier layers and a core with reinforcing rods previously proposed a generalized Lagrange variational principle is used.
Keywords: sandwich plates and shells, transversal-soft core, side member, medium bending, refined beam and core models, contact stress, Lagrange variational principle.
Funding agency Grant number
Russian Foundation for Basic Research 16-08-00316_а
16-38-00788_мол_а
Received: 22.06.2016
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 1, Pages 69–75
DOI: https://doi.org/10.3103/S1066369X1701008X
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: I. B. Badriev, M. V. Makarov, V. N. Paimushin, “Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1, 77–85; Russian Math. (Iz. VUZ), 61:1 (2017), 69–75
Citation in format AMSBIB
\Bibitem{BadMakPai17}
\by I.~B.~Badriev, M.~V.~Makarov, V.~N.~Paimushin
\paper Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 1
\pages 77--85
\mathnet{http://mi.mathnet.ru/ivm9198}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 1
\pages 69--75
\crossref{https://doi.org/10.3103/S1066369X1701008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408827200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013890940}
Linking options:
  • https://www.mathnet.ru/eng/ivm9198
  • https://www.mathnet.ru/eng/ivm/y2017/i1/p77
  • This publication is cited in the following 47 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :49
    References:43
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024