|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 1, Pages 12–16
(Mi ivm9192)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Jump boundary-value problem on a contour with elongate singularities
B. A. Katsa, S. R. Mironovab, A. Yu. Pogodinac a Kazan (Volga Region) Federal University,
18 Kremlyovskaya str., Kazan, 420008 Russia
b Kazan National Research Technical University named after A.N. Tupolev,
10 K. Marks str., Kazan, 420111 Russia
c Saratov State University,
83 Astrakhanskaya str., Saratov, 410012 Russia
Abstract:
Let $\Gamma$ be an image of the interval $(0,1)$ under one-to-one continuous mapping $\phi: (0,1)\to \mathbb{C}$. If the difference of closure of $\Gamma$ and the very set $\Gamma$ contains more than one point, then we say that $\Gamma$ is a contour with elongate singularities. We study the jump boundary-value problem for analytical functions on that contours and obtain new solvability criteria for it.
Keywords:
jump problem, contour with singularities.
Received: 07.05.2015
Citation:
B. A. Kats, S. R. Mironova, A. Yu. Pogodina, “Jump boundary-value problem on a contour with elongate singularities”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1, 12–16; Russian Math. (Iz. VUZ), 61:1 (2017), 10–13
Linking options:
https://www.mathnet.ru/eng/ivm9192 https://www.mathnet.ru/eng/ivm/y2017/i1/p12
|
|