Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 12, Pages 3–11 (Mi ivm9180)  

This article is cited in 14 scientific papers (total in 14 papers)

On a method of construction of asymptotic decompositions of bisingular perturbed problems

K. Alymkulova, D. A. Tursunovb

a Osh State University, 331 Lenin str., Osh, 723500 Republic of Кyrgyzstan
b Ural State Pedagogical University, 9 К. Libknekht str., Yekaterinburg, 620151 Russia
References:
Abstract: We propose an analog of the method of boundary functions for constructing uniform asymptotic expansions of solutions to bisingular perturbed problems. With the use of this method we construct uniform asymptotic expansions of solutions to the Dirichlet problem for bisingular perturbed ordinary differential equations and second order elliptic equations. Applying the maximum principle, we obtain estimates for the remainder terms.
Keywords: asymptotic expansion, Dirichlet problem, Airy function, boundary functions.
Received: 07.05.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 12, Pages 1–8
DOI: https://doi.org/10.3103/S1066369X1612001X
Bibliographic databases:
Document Type: Article
UDC: 517.928+517.955
Language: Russian
Citation: K. Alymkulov, D. A. Tursunov, “On a method of construction of asymptotic decompositions of bisingular perturbed problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 12, 3–11; Russian Math. (Iz. VUZ), 60:12 (2016), 1–8
Citation in format AMSBIB
\Bibitem{AlyTur16}
\by K.~Alymkulov, D.~A.~Tursunov
\paper On a~method of construction of asymptotic decompositions of bisingular perturbed problems
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 12
\pages 3--11
\mathnet{http://mi.mathnet.ru/ivm9180}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 12
\pages 1--8
\crossref{https://doi.org/10.3103/S1066369X1612001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409309100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84997287951}
Linking options:
  • https://www.mathnet.ru/eng/ivm9180
  • https://www.mathnet.ru/eng/ivm/y2016/i12/p3
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :71
    References:47
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024