Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 10, Pages 29–35 (Mi ivm9161)  

This article is cited in 5 scientific papers (total in 5 papers)

On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems

A. S. Leonov

National Research Nuclear University "MEPhI", 31 Kashirskoe Highway, Moscow, 115409 Russia
Full-text PDF (189 kB) Citations (5)
References:
Abstract: We consider a concept of linear a priori estimate of the accuracy for approximate solutions to inverse problems with perturbed data. We establish that if the linear estimate is valid for a method of solving the inverse problem, then the inverse problem is well-posed according to Tikhonov. We also find conditions, which ensure the converse for the method of solving the inverse problem independent on the error levels of data. This method is well-known method of quasi-solutions by V. K. Ivanov. It provides for well-posed (according to Tikhonov) inverse problems the existence of linear estimates. If the error levels of data are known, a method of solving well-posed according to Tikhonov inverse problems is proposed. This method called the residual method on the correctness set (RMCS) ensures linear estimates for approximate solutions. We give an algorithm for finding linear estimates in the RMCS.
Keywords: inverse problems, linear a priori estimate of the accuracy, well-posedness according to Tikhonov.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00182-a
14-01-91151-ГФЕН-a
Received: 05.03.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 10, Pages 23–28
DOI: https://doi.org/10.3103/S1066369X16100042
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: Russian
Citation: A. S. Leonov, “On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 10, 29–35; Russian Math. (Iz. VUZ), 60:10 (2016), 23–28
Citation in format AMSBIB
\Bibitem{Leo16}
\by A.~S.~Leonov
\paper On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 10
\pages 29--35
\mathnet{http://mi.mathnet.ru/ivm9161}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 10
\pages 23--28
\crossref{https://doi.org/10.3103/S1066369X16100042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409307300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84988878618}
Linking options:
  • https://www.mathnet.ru/eng/ivm9161
  • https://www.mathnet.ru/eng/ivm/y2016/i10/p29
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :84
    References:65
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024