|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 10, Pages 8–13
(Mi ivm9159)
|
|
|
|
This article is cited in 12 scientific papers (total in 12 papers)
Conformal mappings onto Einstein spaces
L. E. Evtushika, I. Hinterleitnerb, N. I. Gusevac, J. Mikešd a Moscow State University, 1 Vorob'yovy Gory, Moscow, 119991 Russia
b Brno University of Technology, 17 Žižkova str., Brno, 60200 Czech Republic
c Moscow State Pedagogical University, 1 Malaya Pirogovskaya str., Moscow, 119882 Russia
d Palacky University, 12 17 .listopadu str., Olomouc, 77146 Czech Republic
Abstract:
In the present paper we study conformal mappings of Riemannian manifolds onto an Einstein manifold for the minimal condition on the differentiability class of these manifolds. We show for which conditions the corresponding equations obtained by J. Mikeš, M. L. Gavril'chenko and E. I. Gladyscheva, which defined these mappings, are linear. We obtain the number of necessary parameters on which depends the general solution of fundamental system of equations.
Keywords:
(pseudo-)Riemannian space, conformal mapping, Einstein space.
Received: 11.03.2015
Citation:
L. E. Evtushik, I. Hinterleitner, N. I. Guseva, J. Mikeš, “Conformal mappings onto Einstein spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 10, 8–13; Russian Math. (Iz. VUZ), 60:10 (2016), 5–9
Linking options:
https://www.mathnet.ru/eng/ivm9159 https://www.mathnet.ru/eng/ivm/y2016/i10/p8
|
Statistics & downloads: |
Abstract page: | 304 | Full-text PDF : | 57 | References: | 50 | First page: | 23 |
|