Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 9, Pages 51–58 (Mi ivm9151)  

On the solvability of nonlocal problem for a hyperbolic equation of the second kind

O. A. Repina, S. K. Kumykovab

a Samara State Economic University, 141 Sovetskoi Armii str., Samara, 443090 Russia
b Kabardino-Balkarian State University, 173 Chernyshevskii str., Nalchik, 360004 Russia
References:
Abstract: In the characteristic triangle, for a hyperbolic equation of the second kind we study a nonlocal problem when boundary condition contains a linear combination of operators of fractional Riemann–Liouville integro-differentition. We establish intervals of change of orders of operators of fractional integro-differentiation associated with the parameters of the equation for which the problem is either uniquely solvable or has more than one solution.
Keywords: operators of fractional integro-differentiation, Volterra integral equation of the second kind, method of successive approximations.
Received: 27.02.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 9, Pages 46–52
DOI: https://doi.org/10.3103/S1066369X1609005X
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: O. A. Repin, S. K. Kumykova, “On the solvability of nonlocal problem for a hyperbolic equation of the second kind”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9, 51–58; Russian Math. (Iz. VUZ), 60:9 (2016), 46–52
Citation in format AMSBIB
\Bibitem{RepKum16}
\by O.~A.~Repin, S.~K.~Kumykova
\paper On the solvability of nonlocal problem for a~hyperbolic equation of the second kind
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 9
\pages 51--58
\mathnet{http://mi.mathnet.ru/ivm9151}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 9
\pages 46--52
\crossref{https://doi.org/10.3103/S1066369X1609005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409305700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979231014}
Linking options:
  • https://www.mathnet.ru/eng/ivm9151
  • https://www.mathnet.ru/eng/ivm/y2016/i9/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :56
    References:42
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024