|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 6, Pages 54–60
(Mi ivm9123)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Optimal two-sided boundary control of heat transmission in a rod. Hyperbolic model
R. K. Romanovskii, Yu. A. Medvedev Omsk State Technical University, 11 Mira Ave., Omsk, 644050 Russia
Abstract:
We consider mixed problem for one-dimensional hyperbolic system of thermal conductivity equations. We construct a class of boundary controls that provide given distribution on phase vector $(T,q)$ in a given moment of time. From this class we choose a control by the Lagrange method that minimize a square functional of loss.
Keywords:
hyperbolic conductivity, boundary phase vector control, reduction of boundary control to starting one, Riemann matrices of first and second kind.
Received: 18.11.2014
Citation:
R. K. Romanovskii, Yu. A. Medvedev, “Optimal two-sided boundary control of heat transmission in a rod. Hyperbolic model”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 6, 54–60; Russian Math. (Iz. VUZ), 60:6 (2016), 45–51
Linking options:
https://www.mathnet.ru/eng/ivm9123 https://www.mathnet.ru/eng/ivm/y2016/i6/p54
|
|