Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 5, Pages 70–74 (Mi ivm9113)  

This article is cited in 7 scientific papers (total in 7 papers)

Brief communications

On operator monotone and operator convex functions

A. M. Bikchentaev

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (184 kB) Citations (7)
References:
Abstract: We establish monotonicity and convexity criteria for a continuous function $f\colon\mathbb R^+\to\mathbb R$ with respect to any $C^*$-algebra. We obtain some estimates for noncompactness measure of $W^*$-algebra elements products differences. We also give a commutativity criterion for a positive $\tau$-measurable operator and a positive operator from a von Neumann algebra.
Keywords: Hilbert space, von Neumann algebra, $C^*$-algebra, $W^*$-algebra, operator monotone function, operator convex function, measure of noncompactness, trace, measurable operator, commutativity of operators.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02433
Received: 13.11.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 5, Pages 61–65
DOI: https://doi.org/10.3103/S1066369X16050054
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “On operator monotone and operator convex functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 5, 70–74; Russian Math. (Iz. VUZ), 60:5 (2016), 61–65
Citation in format AMSBIB
\Bibitem{Bik16}
\by A.~M.~Bikchentaev
\paper On operator monotone and operator convex functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 5
\pages 70--74
\mathnet{http://mi.mathnet.ru/ivm9113}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 5
\pages 61--65
\crossref{https://doi.org/10.3103/S1066369X16050054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409282900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971265041}
Linking options:
  • https://www.mathnet.ru/eng/ivm9113
  • https://www.mathnet.ru/eng/ivm/y2016/i5/p70
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024